

MAASAI MARA UNIVERSITY

SPECIAL/RESITS UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR FIRST YEAR FIRST SEMESTER

SCHOOL OF BUSINESS AND ECONOMICS BACHELOR OF ARTS ECONOMICS BACHELOR OF SCIENCE IN AGRIBUSINESS MANAGEMENT

COURSE CODE: AGB 1104 COURSE TITLE: INTODUCTION TO MATHS II

DATE: 26TH JULY, 2021

TIME: 1430 - 1630HRS

INSTRUCTIONS TO CANDIDATES Answer Question **ONE** and any other **THREE** questions

a) Define the following terms i. Function ii. Derivative a. Singular matrix	(23 MA3)	(6 mks)
b. Find out the x values of two to	urning points of the function:	
$y = x^3 + 8x^2 + 5x + 3$		(3 mks)
c) Let g(x) = x ² + 7 i. Find the range of g ii. Evaluate g(-3)		(4 mks)
d)The marginal profit function is y and x is the sales in units .A firm bro fixed costs of the company	-	-
e) Let $B = \begin{bmatrix} 2 & 4 & 5 \\ 0 & 3 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.		
Find B ^T B ⁻¹		(2 mks) (6 mks)
SECTION B(answer any three ques	stions)	
QUESTION TWO	(15 MKS)	
a)State any two types of functions		(2 mks)
b) Find the gradient of the following	g functions	

(25 MKS)

i)
$$y = 3x + 4$$

ii) $5x+2y = 1/3$ (3mks)

QUESTION ONE

d). The cost C of printing books is ksh 100 fixed charges plus ksh 50 per book. Given that n is the number of books printed,

i.	Find a function relatin	g C and n	(3 mks)
ii.	Sketch a graph to repr	esent this function	(3 mks)
iii.	i. Find the number of books that can be printed at a cost of ksh 650		a cost of ksh 650
			(4 mks)
QUE	STION THREE	(15 MKS)	
a)De	fine the following terms	s as used in matrix algebra	

i) Inverse matrix ii) Transpose of a matrix	(2 mks)
 b) Solve the following system of equation using matrix algebra i) 2x+8y =2 -2x-4y=6 	(3 mks)
ii) $4x_1+x_2-5x_3=8$	
$-2x_1 + 3x_2 + x_3 = 12$	
$3x_1 - x_2 + 4x_3 = 5$	(10 mks)

QUESTION FOUR

a) Find the equation for a quadratic function through the points (1,7), (4,5)and (5,2).

b) Solve for x

i.	Log(7x + 2) - log(x - 1) = 1
ii.	$Log_{x}(8/_{27}) = 3$

c) Tom has ksh 5000 in a savings account that pays 5% interest annually. Write an equation that shows the amount of money he has in x years, assuming no deposits or withdrawals were made. Hence find how much money bill will in the account in ten years time (5 mks) **QUESTION FIVE** (15 MKS)

(4 mks)

(6mks)

(15 MKS)

a)Find out the derivatives of the following functions

i) $y=3x^2+5x$	
ii) $y=3(2x^3+1)$	(4 mks)

b)The anticipated profits of a limited as a function of time is $P = 20 + 12t - t^2$ (where p is the net profit and t is time in years)

What is the anticipated profit during the second and sixth year? (4 mks)

c)The resale value of a certain industrial machine decreases over a 10- year period at a rate that depends on the age of the machine .When the machine is x years old , the rate at which its value is changing is 220(x-10) dollars per year.

- Express the value of the machine as a function of its age and initial value (4mks)
- ii. If the machine was originally worth \$ 12,000, how much will it be worth when it is 10 years old (3 mks)

QUESTION SIX

(15 MKS)

a) A manager has found that the marginal cost is $3q^2 - 60q + 400$ dollars per unit when q units have been produced. The total cost of producing the first 2 units is \$ 900. What is the total cost of producing the first 10 units? **(5 mks)**

b) A company has analyzed their prices and costs and have developed the following functions Revenue (ksh) = $400Q-8Q^2$ Cost (ksh) = $Q^2+10Q+40$ Where Q is the number of units sold Find the:

i) quantity that the firm should produce in order to maximize profit

	(5 mks)
ii) price of each unit	(3 mks)
iii)amount of profit	(2 mks)

.....END.....