

# **MAASAI MARA UNIVERSITY**

## REGULAR UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR YEAR FOUR FIRST SEMESTER

# SCHOOL OF PURE, APPLIED AND HEALTH SCIENCES BACHELOR OF SCIENCE IN APPLIED STATISTICS & COMPUTING

# **COURSE CODE: STA 4138 COURSE TITLE: STATISTICAL COMPUTING**

#### DATE:

TIME:

#### **INSTRUCTIONS TO CANDIDATES**

- 1. Answer Question **ONE and any other Two** questions.
- 2. Show all the workings clearly
- 3. Do not write on the question paper
- 4. All Examination Rules Apply.

#### **Question One (30 Marks)**

- (a)A random variable *X* has probility density function given by  $f(x) = 3x^2$ , 0 < x < 1.
  - (i) Write down the Cumulative Distribution Function of *X* (3 Marks)
  - (ii) Write down an algorithm to simulate sample of size n=20 from the distribution of *X* using the inverse transformation method.

(3 Marks)

- (b) Write down an R function that performs a sample t-test for testing  $H_0: \mu_1 - \mu_2 = 0 \text{ vs } H_A: \mu_1 - \mu_2 \neq 0 \text{ at } \alpha = .05$  (4 Marks) (c) (i) Evaluate  $I = \int_0^{\pi/2} \sin 2x \, dx$ . (3 Marks) (ii) Write down an R-code for approximating the integral  $I = \int_0^{\pi/2} \sin 2x \, dx$  using simulations from the uniform distribution. (3 Marks) (3 Marks)
- (d) (i) Write down an R code for simulating the rolling of a fair die.

```
(3 Marks)
```

(ii) Outline briefly how you would test that indeed this process mimics the rolling of a die. (3 Marks)

(e)Write an R program that will find the zeros of  $f(x) = x^3 - 2x - 2$  using the Newton Raphson method. (8 Marks)

### **Question Two (20 Marks)**

(a) Nine students were randomly selected who had taken the examination twice. A researcher would like to test the claim that students who take the examination a second time score higher than their first test.

| Student           | Α  | В  | С  | D  | E  | F  | G  | Η  | Ι  |  |
|-------------------|----|----|----|----|----|----|----|----|----|--|
| First EXAM Score  | 48 | 51 | 53 | 54 | 55 | 56 | 60 | 62 | 66 |  |
| Second EXAM Score | 46 | 50 | 53 | 52 | 58 | 58 | 56 | 64 | 69 |  |

(i) What are the hypotheses?

(1 Mark) (2 Marks)

- (ii) What are the test's assumptions?
- (iii) Write the R command to test of whether the assumption of normality is reasonable.
- (iv) Write the R command to perform the hypothesis test. (2 Marks)

- (v) If the p-value = 0.8981, State your final conclusion in words. Use
  ☑ = 0.05. (2 Marks)
- (vi) Assume that the above data were from two independent populations. State the hypotheses and Write the R commands to test the hypotheses. (3 Marks)
- (b) The following table lists the fuel consumption (miles/gallon) and weight (lbs) of a vehicle.

| Weight (lbs)      | 3175 | 3450 | 3225 | 3985 | 2440 | 2500 | 2290 |
|-------------------|------|------|------|------|------|------|------|
| MPG(Miles/Gallon) | 27   | 29   | 27   | 24   | 37   | 34   | 37   |

A statistical test was carried out to investigate the linear relationship between Weight and MPG .The p-value was 0.001387 and correlation coefficient was -0.9439269.

(i) Write R command which was used to perform the above test.

- (ii) Is the linear relationship statistically significant? Use  $\alpha$ =0.05.
  - (3 Marks)
- (iii) What percent of a vehicle's fuel consumption can be explained by its weight? (2 Marks)
- (iv) Write an R command that would be used to obtain the linear equation. (2 Marks)

### **Question Three (20 Marks)**

The binomial probability mass function with parameters (n, p), 0 , is given by

$$p_j = P(X = j) = \frac{n!}{(n-j)!j!} p^j (1-p)^{n-j}; \text{ for } j = 0,1,2,...,n$$

- (a) Verify the recursive relation  $p_{j+1} = \frac{(n-j)}{(j+1)} \times \frac{p}{(1-p)} p_j$  (8 Marks)
- (b) Use the relation in part (a) to write an algorithm for generating binomial random variables. (6 Marks)
- (c) Write an R code to execute the algorithm in part (b) (6 Marks)

### **Question Four (20 Marks)**

(a) The Weibull distribution function with parameters shape= $\lambda$  scale =1 is of the form

 $F(x) = 1 - \exp(x^{\lambda})$ 

<sup>(2</sup> Marks)

- (i) Write an R code to Generate n random numbers from this Weibull distribution (5 Marks)
- (ii)Write an algorithm that will maximize the log likelihood using the Newton-Raphson algorithm. (5 Marks)
- (b) Using the Newton Raphson Method in determining the root of the equation  $2x 3\sin(x) 5 = 0$ ,
  - (i) Show that the  $(n + 1)^{th}$  better approximation to the root is given by

$$x_{n+1} = \frac{3\sin(x_n) - 3x_n\cos(x_n) + 5}{2 - 3\cos(x_n)}$$

(5 Marks)

(ii) Use the results in b(i) to write an R code that can be used to obtain the root (5 Marks)