

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER

SCHOOL OF PURE, APPLIED AND HEALTH SCIENCES.

DEGREE IN APPLIED STATISTICS WITH COMPUTING.

COURSE CODE: STA 4136

COURSE TITLE: MEASURE AND PROBABILITY THEORY

DATE:

TIME:

INSTRUCTIONS TO CANDIDATES

Answer Question ONE and any other TWO questions

This paper consists of FOUR printed pages. Please turn over

Question One (30 marks)

(a) Let $\Omega = \{1, 2, 3\}$, $F_1 = \{\{1\}, \{2, 3\}, \Omega, \emptyset\}$ and $F_2 = \{\{1, 2\}, \{3\}, \emptyset, \Omega\}$ Show that F_1 and F_2 are both algebras but not $F_1 \cup F_2$ (5 marks) Let Ω be a non-empty set. Show that $F = {\Omega, \emptyset}$ and $G = P(\Omega) = {A:}$ (b)Ac Ω } are both σ -algebras (5 marks) (c) Define the following terms A measurable space (i) Random variable (ii) Simple function (iii) (6marks) Let \square be a measure on algebra F and let A,B \in F. Then show that (d) $(A) \leq (B)$ if AcB (5 marks) (e)Let Ω be a non-empty set and $F = P(\Omega)$. Define (A) = |A|. Show that \mathbb{Z} is a measure.

(4 marks)

(f) Prove that $Var(X_1 + X_2 + ..., X_n) = \sum_{i=1}^n Var(X_i)$ if $x'_i s$ are independent. (5 marks)

(g)Let {A_n} be a sequence of independent sets. Prove that $P(\bigcap_{i=1}^{\infty} A_i) = \prod_{i=1}^{\infty} P(A_i)$

(5 marks)

Question Two (20 marks)

(a) Let Ω be a non-empty set and $\{A_i\}_{i=N}$ be a sequence of subsets of Ω such that $A_{i+1}CA_i$ for all $i \in \mathbb{N}$. Varify that $\Lambda = \{A_i: I \in \mathbb{N}\}$ is a π - system.

(8 marks)(b) Let $\Omega = \{a,b,c,d\}$ and $F_1 = \{\{a\},\{b,c,d\},\Omega,\emptyset\}$ and $F_2 = \{\text{ the set of all subsets of } \Omega\}$ Define $T_i: \Omega \rightarrow \Omega, I = 1,2$ By $T_1(\omega) = a$ for $\omega \in \Omega$ And $T_2(\omega) = \begin{cases} a & if \ \omega = a, b \\ b & if \ \omega = c, d \end{cases}$ Show that T_1 is $\langle F_1, F_2 \rangle$ measurable And T_2 is not $\langle F_1, F_2 \rangle$ measurable (12 marks)

Question Three (20 marks).

- (a) Prove that as n increases, the probability that the average of number of successes distributed as Bernoulli deviates from ½ by more than any pre assigned number tends to zero.
- (b) Prove that if X₁ are identically independently distributed with E(X_i) = $\boxed{2} < \infty$ then $\frac{\sum X_i}{n} \rightarrow \mu$ as $n \rightarrow \infty$

(10 marks)

Question Four (20 marks)

(a)State and Prove Chebychev's inequality	
	(10 marks)

(b) Let f be measurable function. Prove that $\left| \int f du \right| \leq \int \left| f \right| du$

(10 marks)