

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS
2021/ 2022 ACADEMIC YEAR FOURTH YEAR FIRST SEMESTER SCHOOL OF PURE, APPLIED AND HEALTH SCIENCES.

DEGREE IN APPLIED STATISTICS WITH COMPUTING.

COURSE CODE: STA 4136

COURSE TITLE: MEASURE AND PROBABILITY THEORY

INSTRUCTIONS TO CANDIDATES

Answer Question ONE and any other TWO questions
This paper consists of FOUR printed pages. Please turn over

Question One (30 marks)

(a) Let $\Omega=\{1,2,3\}, F_{1}=\{\{1\},\{2,3\}, \Omega, \emptyset\}$ and $F_{2}=\{\{1,2\},\{3\}, \emptyset, \Omega\}$ Show that F_{1} and F_{2} are both algebras but not $F_{1} \cup F_{2}$ (5 marks)
(b) Let Ω be a non-empty set. Show that $F=\{\Omega, \emptyset\}$ and $G=P(\Omega)=\{A$: $\operatorname{Ac} \Omega\}$ are both σ-algebras
(5 marks)
(c) Define the following terms
(i) A measurable space
(ii) Random variable
(iii) Simple function
(6marks)
(d) Let 0 be a measure on algebra F and let $A, B \in F$. Then show that (A) \leq (B) if AcB
(5 marks)
(e) Let Ω be a non-empty set and $\mathrm{F}=\mathrm{P}(\Omega)$. Define (A) $=|\mathrm{A}|$. Show that 0 is a measure.
(4 marks)
(f) Prove that $\operatorname{Var}\left(\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots . \mathrm{X}_{\mathrm{n}}\right)=\sum_{1=1}^{n} \operatorname{Var}\left(X_{i}\right)$ if $x_{i}^{\prime} s$ are independent. (5 marks)
(g)Let $\left\{A_{n}\right\}$ be a sequence of independent sets. Prove that $\mathrm{P}\left(\cap_{i=1}^{\infty} A_{i}\right)=\prod_{i=1}^{\infty} P\left(A_{i}\right)$

Question Two (20 marks)

(a) Let Ω be a non-empty set and $\left\{A_{i}\right\}_{i=N}$ be a sequence of subsets of Ω such that $A_{i+1} \mathrm{C} A_{i}$ for all $\mathrm{i} \in \mathrm{N}$. Varify that $\Lambda=\left\{\mathrm{A}_{\mathrm{i}}: \mathrm{I} \in \mathrm{N}\right\}$ is a π - system.
(8 marks)
(b) Let $\Omega=\{a, b, c, d\}$ and $F_{1}=\{\{a\},\{b, c, d\}, \Omega, \emptyset\}$ and $F_{2}=\{$ the set of all subsets of $\Omega\}$
Define $\mathrm{T}_{\mathrm{i}}: \Omega \rightarrow \Omega, \mathrm{I}=1,2$
By $\mathrm{T}_{1}(\omega)=$ a for $\omega \in \Omega$
And $\mathrm{T}_{2}(\omega)= \begin{cases}a & \text { if } \omega=a, b \\ b & \text { if } \omega=c, d\end{cases}$
Show that T_{1} is $\left\langle\mathrm{F}_{1}, \mathrm{~F}_{2}\right\rangle$ measurable
And T_{2} is not $\left\langle F_{1}, F_{2}\right\rangle$ measurable
(12 marks)

Question Three (20 marks).

(a) Prove that as n increases, the probability that the average of number of successes distributed as Bernoulli deviates from $1 / 2$ by more than any pre assigned number tends to zero.
(10 marks)
(b) Prove that if X_{I} are identically independently distributed with $\mathrm{E}\left(\mathrm{X}_{\mathrm{i}}\right)=$ $0<\infty$ then
$\frac{\sum x_{i}}{n} \rightarrow \mu$ as $\mathrm{n} \rightarrow \infty$
(10 marks)

Question Four (20 marks)

(a)State and Prove Chebychev's inequality
(b) Let f be measurable function. Prove that $\left|\int f d u\right| \leq \int|f| d u$

