

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR SECOND YEAR FIRST SEMESTER

SCHOOL OF SCIENCE BACHELOR OF SCIENCE IN MATHEMATICS & BACHELOR OF SCIENCE IN APPLIED STATISTICS WITH COMPUTING

COURSE CODE: STA 2113-1 COURSE TITLE: OPERATION RESEARCH I

DATE: 1ST **APRIL, 2022**

TIME: 1100-1300

INSTRUCTIONS TO CANDIDATES

- 1. Answer **ALL** questions from section A and any **TWO** from section B.
- 2. Use of sketch diagrams where necessary and brief illustrations are encouraged.
- 3. Read the instructions on the answer booklet keenly and adhere to them.

This paper consists of **four** printed pages. Please turn over.

SECTION A (30 MARKS)

Answer all questions

QUESTION ONE (30 MARKS)

- (a) Give four cases which occur when an LP is solved [4Mks]
- (b) Consider the LPP

min
$$z = 3x_1 - 3x_2 + 7x_3$$

subject to $x_1 + x_2 + 3x_3 \le 40$
 $x_1 + 9x_2 - 7x_3 \ge 50$
 $5x_1 + 3x_2 = 20$
 $|5x_2 + 8x_3| \le 100$
 $x_1 \ge 0, x_2 \ge 0, x_3(urs)$

Write the canonical and the standard forms of the LP model[6Mks](c) Give at least three importance of convexity in optimization
[3Mks][3Mks]

(d) Use simplex method to solve the following LP model

$$\max \quad z = 3x_1 + 5x_2 + 4x_3$$

subject to $2x_1 + 3x_2 \leq 8$
 $+2x_2 + 5x_3 \leq 10$
 $3x_1 + 2x_2 + 4x_3 \leq 15$
 $x_1, x_2, x_3 \geq 0$

[6Mks]

(e) Using the two-phase technique, solve the following LP model

min
$$z = 3x_1 + 2x_2$$

subject to $x_1 + x_2 \ge 2$
 $x_1 + 3x_2 \le 3$
 $x_1 - x_2 = 1$
 $x_1, x_2 \ge 0$

[6Mks]

(f) Convert the following unbalanced transportation problem to a balanced transportation problem

		Destination			Supply	
		1	2	3	Supply	
Source	1	30	50	15	300	
	2	35	70	20	200	
	3	20	45	60	500	
Demand		300	200	400	900/1000	

SECTION B (40 MARKS)

Answer any TWO Questions

QUESTION TWO (20 MARKS)

(a) Consider the LP model

 $\begin{array}{ll} \max & z = 5x_1 + 12x_2 + 4x_3\\ subject \ to \ x_1 + 2x_2 + x_3 \leq 5\\ & 2x_1 - x_2 + 3x_3 = 2\\ & x_1, x_2, x_3 \geq 0 \end{array}$

(i) Write	the	problem	in	standard	form
[2Mks]					
(ii) Write dowr	the dual prob	olem			[2Mks]
(iii) Solve			the		primal
[5Mks]					
(iv) Solve			the		dual
[5Mks]					

(b) Find the optimal assignment for the following problem

	1	2	3	4
1	1	4	6	3
2	9	7	10	9
3	4	5	11	7
4	8	7	8	5

[6Mks]

QUESTION THREE (20 MARKS)

(a) Consider the following LP model

 $\begin{array}{ll} \max & z = 10x_1 + 15x_2 + 20x_3\\ subject \ to & 2x_1 + 4x_2 + 6x_3 \le 24\\ & 3x_1 + 9x_2 + 6x_3 \le 30\\ & x_1, x_2, x_3 \ge 0 \end{array}$

(i) Find the range of the objective function c_1 of the variable x_1 such that the optimality is unaffected

[4Mks]

(i) Find the range of the objective function c_2 of the variable x_2 such that the optimality is unaffected

[4Mks]

[5Mks]

(ii) Check whether the optimality is affected if the profit coefficients are changed from (10,15,20) to (7,14,15). If so, find the revised optimum solution [4Mks]

(b) Consider the following LP model

$$\begin{array}{ll} \max & z = 3x_1 + 2x_2 + 5x_3\\ subject \ to & x_1 + 3x_2 + 2x_3 \le 15\\ & 2x_2 - x_3 \ge 5\\ & 2x_1 + x_2 - 5x_3 = 10\\ & x_1, x_2, x_3 \ge 0 \end{array}$$

(i) Find its BVs

(ii) Use the result in (i) above to find optimal solution to the dual LP model [5Mks]

[3Mks]

QUESTION FOUR (20 MARKS)

- (a) Consider the LP model
 - max $z = x_1 + 5x_2 + 3x_3$ subject to $x_1 + 2x_2 + x_3 = 3$ $2x_1 - x_2 = 4$ $x_1, x_2, x_3 \ge 0$ (i) Find the dual of the model [3Mks]
 - (ii) Given that basic variables are x_1 and x_3 in the primal optimal solution, find the dual optimal solution (dual variables value and dual objective function value) without solving the dual model
 - [8Mks]
- (b) Consider the LP model

 $\begin{array}{ll} \max & z = 6x_1 + 8x_2 \\ subject \ to & 5x_1 + 10x_2 \le 60 \\ & 4x_1 + 4x_2 \le 40 \end{array}$

 $x_1, x_2 \ge 0$

- (i) Check whether the addition of the constraint $7x_1 + 2x_2 \le 65$ affects the optimality. If it does, find the new optimum solution [3Mks]
- (ii) Check whether the addition of the constraint $6x_1 + 3x_2 \le 48$ affects the optimality. If it does, find the new optimum solution [6Mks]

////END/////