

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR THIRD YEAR FIRST SEMESTER

SCHOOL OF BUSINESS \& ECONOMICS

BACHELOR OF SCIENCE IN ECONOMICS BACHELOR OF SCIENCE IN ECONOMICS \& STATISTICS

BACHELOR OF SCIENCE IN FINANCIAL ECONOMICS

COURSE CODE: ECO 3103

COURSE TITLE: ADVANCED MICROECONOMICS

$$
\text { DATE: 30TH MARCH, } 2022
$$ TIME: 1100-1300

INSTRUCTIONS TO CANDIDATES

1. Answer Question ONE and any other THREE questions

QUESTION ONE

(a) Explain the problems associated with the core of an economy. 5 marks
(b) Discuss any two ways of controlling externality. 5 marks
(c) Using an appropriate example, state and explain the incentive problem in moral hazard.

10 marks
(d) Show that in multi-asset pricing, all assets with a certain return must have the same return.

5 marks

QUESTION TWO

Professor P has hired a teaching assistant, Mr A. Professor P cares about how many hours that Mr. A teaches and about how much she has to pay him. Professor P wants to maximize her payoff function, $\mathrm{x}-\mathrm{s}$, where x is the number of hours taught by Mr. A and s is the total wages she pays him. If Mr. A teaches for x hours and is paid s, his utility is $s-c(x)$ where $c(x)=x 2 / 2$. Mr. A's reservation utility is zero.
(a) If Professor P chooses x and s to maximize her utility subject to the constraint that Mr. A is willing to work for her, how much teaching will Mr. A be doing?

7 marks
(b) How much will Professor P have to pay Mr. A to get him to do this amount teaching?

2 marks
(c) Suppose that Professor P uses a scheme of the following kind to get Mr. A to work for her. Professor P sets a wage schedule of the form $s(x)=a x+$ b and lets Mr. A choose the number of hours that he wants to work. What values of a and b should Professor P choose so as to maximize her payoff function? Could Professor P achieve a higher payoff if she were able to use a wage schedule of more general functional form?

6 marks

QUESTION THREE

Suppose that two agents are deciding how fast to drive their cars. Agent i chooses speed xi and gets utility $u_{i}\left(x_{i}\right)$ from this choice; we assume that $u_{i}\left(x_{i}\right)>$ 0 . However, the faster the agents drive, the more likely it is that they are involved in a mutual accident. Let $\mathrm{p}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ be the probability of an accident, assumed to be increasing in each argument, and let $c_{i}>0$ be the cost that the accident imposes on agent i. Assume that each agent's utility is linear in money.
(a) Show that each agent has an incentive to drive too fast from the social point of view.

4 marks
(b)If agent i is fined an amount t_{i} in the case of an accident, how large should t_{i} be to internalize the externality?

3 marks
(c) If the optimal fines are being used, what are the total costs, including fines, paid by the agents? How does this compare to the total cost of the accident?

4 marks

(d)Suppose now that agent i gets utility $u_{i}(x)$ only if there is no accident. What is the appropriate fine in this case?

4 marks

QUESTION FOUR

(a)Consider two agents with identical, strictly convex preferences and equal endowments.Describe the core of this economy and illustrate it in an

Edgeworth box.
(b) What is the Capital Asset Pricing Model (CAPM)?
(c)Derive the Capital Asset Pricing Model.

2 marks
7 marks

QUESTION FIVE

Make brief notes on the following:
(a)Hidden Action Problem.

5 marks
(b) Hidden Information Problem.
(c) Missing markets.

