

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER

SCHOOL OF PURE APPLIED AND HEALTH SCIENCES

BACHELOR OF SCIENCE IN CHEMISTRY

COURSE CODE: CHE 4144

COURSE TITLE: STATISTICAL THERMODYNAMICS

DATE: 1^{*st*} **APRIL**, 2022

TIME: 1430-1630

INSTRUCTIONS TO CANDIDATES

- 1. Answer Question **ONE** and any other **TWO** questions.
- 2. All Examination Rules Apply.
- 3. Avogardro's costant= 6.022x10²³ mol⁻¹
- 4. Gas constant R = 8.314 JK⁻¹mol⁻¹ = 0.0821 L atm K⁻¹ mol⁻¹
- 5. Plank constant, h, = 6.626×10^{-34} Js
- 6. Speed of light, c, = c = $2.99 \times 10^{8} \text{ Ms}^{-1}$
- 7. Mass of an electron = 9.11×10^{-31} Kg
- 8. Mass of a proton = $1.7 \times 10^{-27} \text{ Kg}$
- 9. Boltzmann constant = 1.38×10^{-23} JK⁻¹
- $10.\pi = 22/7$
- 11. 1 u = 1.6605 x 10 $^{-27}$ Kg
- $12. P^{e} = 10^{5} Pa$
- 13. Speed of light, c, = 3.0 x 10 $^8\,Ms^{\text{-}1}$

SECTION A

Question One (30mks)

- a) What is the temperature of a two-level system of energy separation equivalent to 300 cm⁻¹ when the population of the upper state is one-half that of the lower state **(3mks)**
- b) Derive the expression for the partition function of a two-state system with one state at zero and another state at energy E, given that $q = \Sigma e^{-\beta E_i}$ (3mks)
- c) Explain the following terms;
- i) Optical trapping (2mks)
- ii) Adiabatic demagnetization (2mks)
- d) Calculate the translational partition function of a hydrogen molecule confined to a 100 cm³ vessel at 25 ° C. Mass of Hydrogen = 2.016 u. (4mks)
- e) From $E = \Sigma_i n_i E_{i,j}$ show that $E = Ndq/qd\beta$ (4mks)
- f) Calculate the translational partition function at 300 K of a molecule of molar mass 120 g mol⁻¹ in a container of volume 2.00 cm³ (3mks)
- g) Calculate (a) the thermal wavelength, (b) the translational partition function of an Argon atom in a cubic box of side 1.00 cm at 300 K. Mass of argon = 39.948 u. **(5mks)**
- h) The mean energy for any mode of motion is given by $\langle \in^m \rangle = -\frac{1}{q^m} \left(\frac{\partial q^m}{\partial \beta}\right)_V$, If the translational partition function is given by; $q^T = \frac{X}{\Lambda}$ where $\Lambda = h\left(\frac{1}{2\pi m}\right)^{\frac{1}{2}} (\beta)^{\frac{1}{2}}$. Show that $\langle \in^m \rangle = \frac{1}{2} kT$ (4mks)

SECTION B

Answer any TWO questions from this section, each question carries 20 marks

Question Two (20mks)

- a) Define a canonical ensemble **(1mk)**
- b) Evaluate the rotational partition function of H-Cl at 25 °C given that B = 10.59 cm⁻¹, KT/hC = 207.22cm⁻¹ (3mks)
- c) Calculate the standard molar entropy of Neon gas at 200 K Mass of Neon = 20.1797 u (5mks)
- d) Define the following terms as used in statistical thermodynamics;
 - i) A configuration (1mk)
 - ii) The weight of a configuration **(1mk)**
- e) Use the equipartition theorem to estimate the constant-volume molar heat capacity of O₃ (2mks)
- f) Calculate the rotational partition function of SO₂ at 298 K from its rotational constants 2.027 36 cm⁻¹, 0.344 17 cm⁻¹, and 0.293 535 cm⁻¹. σ = 2 (3mks)

g) Estimate the molar constant-volume heat capacity of water vapour at 100 °C. Vibrational wave numbers are 3656.7cm⁻¹, 1594cm⁻¹ and 3755.8cm⁻¹. The rotational constants of a water molecule are 27.9, 14.5 and 9.3cm⁻¹. (4mks)

Question Three (20mks)

- a) Calculate the rotational partition function of H_2O at 298 K from its rotational constants 27.878 cm⁻¹, 14.509 cm⁻¹, and 9.287 cm⁻¹. σ = 2 (3mks)
- b) Calculate the value of G_{m}^{e} G_{m}^{e} (0) for H₂O_(g) at 1500K given that, q^v = 1.352, q^R = 486.7 and mass of water = 18.015 u. Density of water = 1gcm⁻³. (7mks)
- c) Evaluate the equilibrium constant for the dissociation $Na_{2(g)} \xrightarrow{} 2Na_{(g)}$ at 1000K from the following data. D₀ = 70.4 Kjmol⁻¹.

The sodium atoms have doublet ground terms. $P^{\theta} = 1.0 \times 10^{5} Pa$ (4mks)

 $\begin{array}{ll} \Lambda \ ({\rm Na}_2) = 8.14 \ {\rm pm} & \Lambda \ ({\rm Na}) = 11.5 \ {\rm pm} \\ q^{\rm R} \ ({\rm Na}_2) = 2246 & q^{\rm V} \ ({\rm Na}) = 4.885 \\ g \ ({\rm Na}_2) = 1 & g \ ({\rm Na}) = 2 \end{array}$

- d) Given that $3/2nRT = 3N/2\beta$, show that $\beta = 1/KT$ (3mks)
- e) Calculate the proportion of I₂ molecules in their second and third vibrational states at 25 ° C. The vibration wave number is 214.6 cm⁻¹ (3mks)

Question Four (20mks)

- a) Calculate the standard molar entropy of xenon gas at 100 K. Mass of Xenon = 131.293 u **(2mks)**
- b) Calculate the standard molar entropy of gaseous Argon at 25 °C. Let $P^{\circ} = 1.0 \times 10^{5}$ Pa. Mass of Argon = 39.948 u **(3mks)**
- c) Given that p = NKT/q(dq/dV), show that P = nRT/V (3mks)
- d) Determine the expression for proportions of molecules in the ground state, first excited state for a two-level system given that the partition function for a two-level system is given by $q = 1 + e^{-\beta E}$ (3mks)
- e) The wave numbers of three modes of CO_2 modes of vibration are 1388 cm⁻¹, 667 cm⁻¹, and 2349 cm⁻¹. Calculate the Vibrational partition function given that kT/hC = 1050.42 cm⁻¹. (4mks)
- f) Explain the origin of residual entropy **(2mks)**
- g) Estimate the rotational partition function of O_2 at 25°C, given that B = . **(3mks)**

////END/////