

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR FIRST YEAR FIRST SEMESTER

SCHOOL OF PURE, APPLIED AND HEALTH SCIENCES (SPAHS)

BACHELOR OF SCIENCE IN CHEMISTRY & BACHELOR OF EDUCATION (SCIENCE)

COURSE CODE: CHE 1103 – 1/CHE 1100-1 COURSE TITLE: BASIC INORGANIC CHEMISTRY

DATE: 1ST APRIL, 2022

TIME: 1430-1630

INSTRUCTIONS TO CANDIDATES

- 1. Answer Question **ONE** and any other **TWO** questions in section **B**
- 2. No writing on the Question paper
- 3. Use of mobile phone in the exam room is prohibited
- 4. Constants to use: Rydberg's 1.097 x 107m, Planks 6.626 x 10^{-34}Js, speed of light 3.0 x 108 m/s

QUESTION ONE

nuclear charge

a) Define the following terms;			
i. Atomic orbital	[1 marks]		
ii. Pfund transition series	[1 marks]		
iii. Ground state	[1 marks]		
iv. Zeeman's effect	[1 marks]		
b) Using a well labelled diagram, explain the working principle	e of a Mass spectrometer		
	[5 marks]		
c) Highlight any four limitations of Bohrs model of an atom	[2 marks]		
d) Match the following atomic models with the scientist wh	no discovered them [1		
mark];			
i. Nuclear model			
ii. Planetary model			
e) Use a well labelled diagram to describe Rutherford's gold	foil experiment and its		
contribution to the development of the atomic structure	[5 marks]		
f) Calculate the amount of energy emitted during a Balmer	series occurring in the		
Visible region of 486nm [5 marks]			
g) Draw the shapes of the following atomic orbitals;			
i. S orbital	[1/2 mark]		
ii. P _x orbital	[1/2 mark]		
iii. d _{xz} orbital	[1/2 mark]		
iv. $d_x^2 - y^2$ orbital	[1/2 mark]		
h) For the element $Z = 17$;			
i. Determine the four quantum numbers for electro	ons in the shell $n = 3$		
	[2 marks]		
ii. Write its box profile electronic configuration	[2 marks]		
i) State the following rules;			
i. Heisenbergs uncertainty principle	[1 mark]		

- ii. De Brogli's rule[1 mark]j) Describe how you can compare atomic radii of elements across the period with their
 - [1 mark]

[30 MARKS]

Page	3	of	4
------	---	----	---

QUESTION TWO

a) State the following;

i. Pauli's principle	[1 mark]
ii. Aufbau's principle	[1 mark]
iii. Hundz rule	[1 mark]
b) Determine the noble gas and box profile electronic configurations for elements (without using a periodic table);	the following
i. Element $Z = 45$	[2 marks]
ii. Element $Z = 75$	[2 marks]
c) Why is the first ionisation energy beryllium is higher than boron?	[3 Marks]

QUESTION THREE

Describe the contributions of the following scientists to the development of the atomic model;

a) J.J. Thompson	[3 marks]
b) John Dalton	[3 marks]
c) Robert Millikan	[4 marks]

QUESTION FOUR

- a) Calculate the amount of energy contained in an electron in the last principal quantum number of the element Francesium (Z = 87, n = 7) [3 marks]
- b) Calculate the energies and frequencies for an electron falling from n=5 in a [5 marks] Paschen series transition
- c) Describe the trends in reactivity down Group VA [2 marks]

[10 MARKS]

[10 MARKS]

[10 MARKS]

QUESTION FIVE

- a) What do you understand by classical and quantum chemistry? [1 mark]
- b) Name any two scientists that emerged from Neils Bohrs limitations in his descriptions of the atomic model. What contributions and rules did each of these scientists formulate? [4 marks]
- c) State the factors that are significant in the changes of atomic radii. [1 Mark]
- d) Explain the variation of atomic radius
- i) Across the period [1¹/₂ mark] ii) Down Group VA $[1\frac{1}{2} \text{ mark}]$
- e) What are hydrogenic atoms? State two examples of hydrogenic atoms [2 marks]

QUESTION SIX

b) c)

a) Determine the group, period and block for each of the following elements.

i.	$1s^2 2s^2$	[1½ Mark]
ii.	$1s^2 2s^2 2p^5$	[1½ Mark]
iii.	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$	[1½ Mark]
iv.	$1s^2 2s^2 2p^6 3s^2 3p^3$	[1½ Mark]
Describe	e 2 limitations of Dalton's postulate, citing examples	[2 marks]
Explain	why Mg ²⁺ is smaller when compared to Na ⁺	[2 Marks]

QUESTION SEVEN

a) Write the electron configuration for the element $Z = 25$					[3 marks]			
b) Explain the variation of ionisation energy across the third period						[3 Marks]		
Element	Na	Mg	Al	Si	Р	S	Cl	Ar
IE (kj/mol)	496	738	578	786	1012	1000	1251	1521

c) How does the boiling point down the Group VII change? [2 Marks]

d) 'Metallic character increases from top to bottom in a group and decreases from left to right in a period of the periodic table'. Explain this quotation [2 Marks]

////END/////

[10 MARKS]

[10 MARKS]

[10 MARKS]