

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER

SCHOOL OF SCIENCE UNIVERSITY EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION SCIENCE

COURSE CODE: PHY 2213 COURSE TITLE: ELECTRICAL CIRCUITS

DATE: 16TH APRIL, 2019

TIME: __0830-1030 HRS

INSTRUCTIONS

- Answer Question **ONE** and any other **TWO**.
- Use of sketch diagrams where necessary and brief illustrations are encouraged.
- Read the instructions on the answer booklet keenly and adhere to them.

This paper consists of __4__ printed pages.

QUESTION ONE:

a) State three advantages of connecting loads in parallel to series in electrical circuits. [3]

[30]

- b) Explain the term 'network' as used in electrical circuits. [2]
- c) Find the instantaneous circuit current if a voltage v = 100sin(1000t) V is applied to:
 - (i) a pure resistive circuit of R=50 Ω [2](ii) a pure inductive circuit of L=0.02 H[3](iii) a pure capacitive circuit of C=10 μ F[3]

d) By Superposition Principle find P_R in figure 1. [3]

Figure 1

- e) Explain the difference between active and passive power. [4]
- f) Find the current phasor if a 60 Hz $220 \angle 30^{\circ}$ V ac voltage is applied to
 - (i) a pure resistive circuit of $R=10 \Omega$ [2]
 - (ii) a pure inductive circuit of L=0.2 H [2]
 - (iii) a pure capacitive circuit of C=10 μ F [2]

g) State the following theorems:

(i)	Norton's theorem states	[2]
()	ו עי וחד	[0]

(ii) Thevenin's theorem [2]

QUESTION TWO: [20]

a) Show that for the circuit shown on fig.2 , Current lags voltage by 90° [4]

Figure 2

b) Refer to the circuit of Fig 3, find:	
(i) the total impedance, Z_T	[7]
(ii) the supply current, I _T	[3]
<i>(iii)</i> the branch currents, I_1 , I_2 and I_3 .	[6]

Figure 3

QUESTION THREE:

[20 marks]

~	-			C 11	
21	Fyn	lain	the	tol	lowing
uj	пчч	am	the	101	lowing

(i) Capacitive reactance		[2]
(ii)	Inductive reactance	[2]
(iii)	Impedance	[2]
(iv)	Phasor	[2]
0 0 17:	the a free group are af 1 00 letter is an	

b) An rms voltage of 10.0 V with a frequency of 1.00 kHz is applied to a 0.395-mF capacitor.

(i) What is the rms current in this circuit? [3]

- (ii) By what factor does the current change if the frequency of the voltage is doubled? [1]
- (iii) Calculate the current for a frequency of 2.00 kHz. [1]c) For the circuit in fig.4
 - (i) Compute P_T and Q_T for the following circuit. [5]
 (ii) Reduce the circuit to its simplest form [2]

Figure 4

QUESTION FOUR: [20 marks]

- a) Explain the steps involved in applying the Mesh Analysis in solving electric circuits [5]
- b) Use Mesh Analysis in fig 5 to find:

(i) The current i through resistor R.	[7]
---------------------------------------	-----

(ii) Power through resistor R. [3]

Figure 5

d) Explain the procedure for the application of the Millman's Theorem [5]

//End//