MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER

SCHOOL OF SCIENCE UNIVERSITY EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION SCIENCE

COURSE CODE: PHY 2213 COURSE TITLE: ELECTRICAL CIRCUITS

DATE: 16 $^{\text {TH }}$ APRIL, 2019
TIME:_0830-1030 HRS

INSTRUCTIONS

- Answer Question ONE and any other TWO.
- Use of sketch diagrams where necessary and brief illustrations are encouraged.
- Read the instructions on the answer booklet keenly and adhere to them.
\qquad 4 printed pages.

QUESTION ONE:

a) State three advantages of connecting loads in parallel to series in electrical circuits. [3]
b) Explain the term 'network' as used in electrical circuits.
c) Find the instantaneous circuit current if a voltage $v=100 \sin (1000 \mathrm{t}) \mathrm{V}$ is applied to:
(i) a pure resistive circuit of $\mathrm{R}=50 \Omega$
(ii) a pure inductive circuit of $\mathrm{L}=0.02 \mathrm{H}$
(iii) a pure capacitive circuit of $\mathrm{C}=10 \mu \mathrm{~F}$
d) By Superposition Principle find P_{R} in figure 1. [3]

Figure 1

e) Explain the difference between active and passive power. [4]
f) Find the current phasor if a $60 \mathrm{~Hz} 220 \angle 30^{\circ} \mathrm{V}$ ac voltage is applied to
(i) a pure resistive circuit of $\mathrm{R}=10 \Omega$
(ii) a pure inductive circuit of $L=0.2 \mathrm{H}$
(iii) a pure capacitive circuit of $\mathrm{C}=10 \mu \mathrm{~F}$
g) State the following theorems:
(i) Norton's theorem states
(ii) Thevenin's theorem
a) Show that for the circuit shown on fig. 2 , Current lags voltage by 90°

Figure 2

b) Refer to the circuit of Fig 3, find:
(i) the total impedance, Z_{T}
(ii) the supply current, I_{T}
(iii) the branch currents, $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3}.

Figure 3

QUESTION THREE:
[20 marks]
a) Explain the following
(i) Capacitive reactance
(ii) Inductive reactance
(iii) Impedance
(iv) Phasor
b) An rms voltage of 10.0 V with a frequency of 1.00 kHz is applied to a $0.395-\mathrm{mF}$ capacitor.
(i) What is the rms current in this circuit?
(ii) By what factor does the current change if the frequency of the voltage is doubled?
(iii) Calculate the current for a frequency of 2.00 kHz . [1]
c) For the circuit in fig. 4
(i) Compute P_{T} and Q_{T} for the following circuit.
(ii) Reduce the circuit to its simplest form

Figure 4

QUESTION FOUR: [20 marks]

a) Explain the steps involved in applying the Mesh Analysis in solving electric circuits [5]
b) Use Mesh Analysis in fig 5 to find:
(i) The current i through resistor R .
(ii) Power through resistor R.

Figure 5

d) Explain the procedure for the application of the Millman's Theorem

