MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR SECOND YEAR TWO SEMESTER

SCHOOL OF SCIENCE Bsc. MATHEMATICS

COURSE CODE: MAT 2215 COURSE TITLE: GROUP THEORY 1

INSTRUCTIONS TO CANDIDATES

1. Answer Question ONE and any other TWO questions.
2. All Examination Rules Apply.

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR THIRD YEAR TWO SEMESTER

SCHOOL OF SCIENCE

Bsc. MATHEMATICS

COURSE CODE: MAT 411 COURSE TITLE: FIELD THEORY

DATE: -4-2019 TIME:

INSTRUCTIONS TO CANDIDATES

1. Answer Question ONE and any other TWO questions.
2. All Examination Rules Apply.

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR THIRD YEAR TWO SEMESTER

SCHOOL OF SCIENCE

Bsc. MATHEMATICS

COURSE CODE: MAT 3228 COURSE TITLE: RINGS AND MODULES

INSTRUCTIONS TO CANDIDATES

1. Answer Question ONE and any other TWO questions.
2. All Examination Rules Apply.

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR THIRD YEAR TWO SEMESTER

SCHOOL OF SCIENCE Bsc. MATHEMATICS

COURSE CODE: MAT 3228 COURSE TITLE: RINGS AND MODULES

DATE: -4-2019 TIME: PM

INSTRUCTIONS TO CANDIDATES

1. Answer Question ONE and any other TWO questions.
2. All Examination Rules Apply.

Question 1 [30 marks]

1 (a). Give:
i. The definition of a ring.
ii. an example of a finite non-commutative ring with identity.
iii. an example of an infinite non commutative ring. [7 marks]
$1(b)$ i. Let R be a ring. State what is meant by a right R - module.
ii. If R is the ring of 3 by 3 matrices over \mathbb{Z}_{2}. Determine the number of elements in R and suggest a possibility for a left and right R - module. Support your suggestion.
[7 marks]

1 (c) i. Give the definition of an integral domain.
ii. Give an example of an integral domain.
iii. Show that $\mathbb{Z}_{m}[x]$ (polynomials in x over \mathbb{Z}_{m}) is in general not an integral domain. [6 marks]

1 (d). Give the definition of a Euclidean ring and give an example of a ring that satisfies your definition.
[4 marks]
1 (e). Let $\Phi: R \rightarrow S$ be a ring homomorphism and
$K=\{r \in R / \phi(r)=0\}$
Prove that K is an ideal of R.
[2 marks]

1(f). Test for irreducibility. Factorize if not irreducible.

$$
\begin{array}{ll}
\text { i. } & x^{3}+x^{2}+1 \text { in } \mathbb{Z}_{2}[x] \\
\text { ii. } & x^{4}+x^{2}+1 \text { in } \mathbb{Z}_{3}[x]
\end{array}
$$

[4 marks]

Question 2 [20 marks]

2 a. Prove that every ideal in a Euclidean ring is principal.
b. Find a single generator for the ideal :
i. $\quad 204 \mathbb{Z}+78 \mathbb{Z}+364 \mathbb{Z}$ of \mathbb{Z}.
ii. $\quad\left(2 x^{2}+3 x-5\right) \mathbb{Q}[x]+\left(4 x^{2}+8 x-5\right) \mathbb{Q}[x]$ of $\mathbb{Q}[x]$.

Question 3 [20 marks]

Let be the ring of 3×3 matrices over \mathbb{Z} and S be the ring of 2×2 matrices over \mathbb{Z}.
i. Prove that the additive abelian group M of all 2 by 3 matrices over \mathbb{Z} is a left S - module and a right $R-$ module.
ii. Determine the result of
left action by $\left[\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right]$ and

$$
\text { right action by }\left[\begin{array}{ccc}
2 & 1 & -1 \\
3 & 0 & 1 \\
1 & -1 & 2
\end{array}\right]
$$

on the module element $\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 0 & 1\end{array}\right]$.
iii. Determine a left S-submodule of M which is not a right $R-$ submodule.
iv. Determine also a proper subgroup of M which is both a left S-submodule and a right R - submodule.

Question 4 [20 marks]

a) Prove that every principal ideal domain satisfies the ascending chain condition on ideals.
b) Prove that every principal ideal domain is a unique factorization domain.
c) Demonstrate that any ascending chain of ideals of \mathbb{Z} which contain the ideal 9000 Z must terminate in a finite number of steps and state the maximum number of possible steps.

Question 5 [20 marks]

5 (a). Give the definition of a ring homomorphism Φ and state what is meant by:
i. the kernel of Φ.
ii. the image of Φ.

5 (b). If $\Phi: R \rightarrow S$ is a ring homomorphism prove that :
i. the kernel of Φ is an ideal of R.
ii. the image of R under Φ is a subring of S.
iii. the ring $\frac{R}{\operatorname{ker} \Phi}$ is isomorphic to the image of R.

5 (C). Illustrate all parts of 5(b) by a ring homomorphism of your choice.

