MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATION

 2018/2019 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER EXAMINATIONSFOR
THE DEGREE OF BACHELOR SCIENCE (MATHEMATICS), APPLIED STATISTICS WITH COMPUTING AND EDUCATION (SCIENCE, ARTS AND SPECIAL NEEDS)

COURSE CODE: MAT 2212 COURSE TITLE: REAL ANALYSIS I

1. This paper contains FOUR (4) questions
2. Answer question ONE (1) and any other TWO (2) questions
3. Do not forget to write your Registration Number.

QUESTION 1 (30MARKS)

a) Define power set $P(X)$ of a set X and hence show that the power set $P(\square)$ of \square is uncountable

5marks
b) Given that $A=\left\{\frac{1}{n}: n \in \square\right\}$. Determine $\sup A, \inf A$ and state whether the maximum and minimum of A exists.

4marks
c) Show that if $x \neq 0$, then $x^{2}>0$ and hence deduce that $1>0$

4marks
d) Prove that for a subset A of \square that is bounded below $\inf A$ is unique 4marks
e) Prove that $\sqrt{2}$ is irrational.

5marks
f) Using the ratio test determine whether the following series converge or diverge $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$

3 marks
g) Define the function $\rho: \square^{2} \times \square^{2} \rightarrow \square$ by $\rho(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|$ where $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$. Show that ρ is a metric on \square^{2} 5marks

QUESTION 2 (20MKS)

a) Let A and B be non-void subsets of \square that are bounded above. Show that $\sup (A+B)=\sup (A)+\sup (B)$
b) Show that the empty set ϕ is a subset of any other set
c) Show that every convergent sequence is Cauchy

5marks
d) Define a continuous function and hence determine whether the function $f: \square \rightarrow \square$ defined by $f(x)=\left\{\begin{array}{cc}\frac{1}{x} \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ is continuous at $x=0$

3marks
e) Show that every Cauchy sequence is bounded

4marks

QUESTION 3 (20MKS)

f) Show that a point $p \in X$ is a limit point of $E \subseteq X$ iff there exists a sequence $\left(x_{n}\right)^{\infty}$ of distinct points of E with $x_{n} \neq p \quad(\forall n \in \square)$ such that $\lim _{n \rightarrow \infty} x_{n}=p \quad$ 10marks
g) Show that if the sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are convergent and $x_{n} \leq y_{n}$ for all $n \in \square$, then $\lim _{x \rightarrow \infty} x_{n} \leq \lim _{x \rightarrow \infty} y_{n}$
h) If $f(x)=\left\{\begin{array}{ll}\frac{1}{x} & x \neq 0 \\ 0 & x=0\end{array}\right.$ find $f^{\prime}(x)$.

QUESTION 4 (20MKS)

a) Test for convergence in the following series
i. $\quad \sum_{n=1}^{\infty} 2^{-n}$
ii. $\sum_{n=1}^{\infty}(-1)^{n+1}$
iii. $\sum_{n=1}^{\infty} n^{-1}$

9marks
b) Classify the monotonic sequences below.
i. $\quad x_{n}=n^{3}$
ii. $\quad x_{n}=(-1)^{n+1}$
iii. $\quad x_{n}=\frac{1}{n}$
iv. $\quad x_{n}=2 \quad \forall n \in \square$

4marks
c) Binary operation $*$ on the set of all real numbers \mathbf{R} is defined by $x * y=|x-y|$. Show that $*$ is commutative but not associative
d) Define the terms
i. A metric space

1mark
ii. Neighbourhood

1mark
iii. A convergent sequence

1mark
iv. Monotonic sequences

1mark
v. Uniformly continuous function

