

**MAASAI MARA UNIVERSITY** 

# REGULAR UNIVERSITY EXAMINATION 2018/2019 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER EXAMINATIONS

FOR

### THE DEGREE OF BACHELOR SCIENCE (MATHEMATICS), APPLIED STATISTICS WITH COMPUTING AND EDUCATION (SCIENCE, ARTS AND SPECIAL NEEDS)

## COURSE CODE: MAT 2212 COURSE TITLE: REAL ANALYSIS I

DATE 18<sup>TH</sup> APRIL 2019 TIME: 1100 – 1300HRS

### **INSTRUCTIONS TO CANDIDATES**

- 1. This paper contains FOUR (4) questions
- 2. Answer question **ONE (1)** and any other **TWO (2)** questions
- 3. Do not forget to write your Registration Number.

#### **QUESTION 1 (30MARKS)**

| a) Define power set $P(X)$ of a set X and hence show that the power set                   |                               |                   |  |  |  |  |
|-------------------------------------------------------------------------------------------|-------------------------------|-------------------|--|--|--|--|
| $P(\Box)$ of $\Box$ is uncountable                                                        |                               | 5marks            |  |  |  |  |
| b) Given that $A = \left\{ \frac{1}{n} : n \in \Box \right\}$ .                           | Determine $\sup A$ , $\inf A$ | and state whether |  |  |  |  |
| the maximum and minimum of                                                                | A exists.                     | 4marks            |  |  |  |  |
| c) Show that if $x \neq 0$ , then $x^2 > 0$ a<br>d) Prove that for a subset $A$ of $\Box$ |                               |                   |  |  |  |  |
| $\inf A$ is unique                                                                        |                               | 4marks            |  |  |  |  |
| e) Prove that $\sqrt{2}$ is irrational.                                                   |                               | 5marks            |  |  |  |  |
|                                                                                           |                               |                   |  |  |  |  |

- f) Using the ratio test determine whether the following series converge or diverge  $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$  3 marks
- g) Define the function  $\rho:\square^2 \times \square^2 \to \square$  by  $\rho(x, y) = |x_1 - y_1| + |x_2 - y_2|$  where  $x = (x_1, x_2), y = (y_1, y_2)$ . Show that  $\rho$  is a metric on  $\square^2$  **5marks**

#### **QUESTION 2 (20MKS)**

- e) Show that every Cauchy sequence is bounded 4marks

#### **QUESTION 3 (20MKS)**

- f) Show that a point  $p \in X$  is a limit point of  $E \subseteq X$  iff there exists a sequence  $(x_n)^{\infty}$  of distinct points of E with  $x_n \neq p$  ( $\forall n \in \Box$ ) such that  $\lim_{n \to \infty} x_n = p$  **10marks**
- g) Show that if the sequences  $(x_n)$  and  $(y_n)$  are convergent and  $x_n \le y_n$  for all  $n \in \Box$ , then  $\lim_{x \to \infty} x_n \le \lim_{x \to \infty} y_n$  **5marks**

h) If 
$$f(x) = \begin{cases} \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 find  $f'(x)$ . 5marks

#### **QUESTION 4 (20MKS)**

a) Test for convergence in the following series

i. 
$$\sum_{n=1}^{\infty} 2^{-n}$$
 ii.  $\sum_{n=1}^{\infty} (-1)^{n+1}$  iii.  $\sum_{n=1}^{\infty} n^{-1}$  **9marks**

- b) Classify the monotonic sequences below.
  - i.  $x_n = n^3$

ii. 
$$x_n = (-1)^{n+1}$$

iii. 
$$x_n = \frac{1}{n}$$

|       | iv.                   | $x_n = 2$      | $\forall n \in \Box$ |                 |                         | 4marks |
|-------|-----------------------|----------------|----------------------|-----------------|-------------------------|--------|
| c)    | Binary                | operation * on | the set of al        | l real numbers  | ${\bf R}$ is defined by |        |
|       | <i>x</i> * <i>y</i> = | x-y . Show the | at * is com          | nutative but no | t associative           | 2marks |
| d)    | l) Define the terms   |                |                      |                 |                         |        |
|       | i.                    | A metric space |                      |                 |                         | 1mark  |
|       | ii.                   | Neighbourhood  | l                    |                 |                         | 1mark  |
|       | iii.                  | A convergent s | equence              |                 |                         | 1mark  |
|       | iv.                   | Monotonic seq  | uences               |                 |                         | 1mark  |
| //END | v.<br><b>)</b>        | Uniformly cont | inuous func          | tion            |                         | 1mark  |

3