

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR FIRST YEAR SECOND SEMESTER

SCHOOL OF SCIENCE BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION

COURSE CODE: MAT 1207 COURSE TITLE: INTEGRAL CALCULUS

INSTRUCTIONS TO CANDIDATES

1. Answer Question ONE and any other two questions.
2. All Examination Rules Apply.

Question One

a) Find
i.) $\int_{1}^{2} \frac{x^{2}+3 x-2}{\sqrt{x}} d x$
ii.) $\int(x-1)^{5}+3(x-1)^{2}+5 d x$
(3 marks)
(3 marks)
iii.) $\int x \ln x^{2} d x$
(3 marks)
iv.) $\int \frac{1-x}{1+x^{2}} d x$
(3 marks)
v.) $\int \frac{1}{x^{2}-4 x+13} d x$
(4 marks)
b) Express in partial fractions the expression $\frac{5 x-3}{(x+1)(x-3)}$. Hence or otherwise find $\int \frac{5 x-3}{(x+1)(x-3)} d x$
(4 marks)
c) It is estimated that t years from now the population of a certain lakeside community will be changing at the rate of $0.6 t^{2}+0.2 t+0.5$ thousand people per year. Environmentalists have found that the level of pollution in the lake increases at the rate of approximately 5 units per 1000 people. By how much will the pollution in the lake increase during the next 2 years?
(4 marks)
d) Determine the volume generated when the area above the axis bounded by the curve $x^{2}+y^{2}=9$ and the ordinates $x=3$ and $x=-3$ is rotated one revolution about the x -axis.
(3 marks)
a) Evaluate $\iint_{R} f(x, y) d A$
where $f(x, y)=1-6 x^{2} y$
$\mathrm{R}: \begin{aligned} & 0 \leq x \leq 2 \\ & -1 \leq y \leq 1\end{aligned}$
(3 marks)

Question Two

a) Find $\int \sin x \cos ^{4} x d x$, hence evaluate $\int_{0}^{\pi / 6} \sin x \cos ^{4} x d x$
(6 marks)
b) Find the area between the curves $y=x^{2}+1$ and $y=7-x$
(6 marks)
c) Evaluate
i.) $\int_{1}^{4} x^{2} \ln x d x$
(4 marks)
ii.) $\int_{0}^{\pi / 4} \sqrt{1+\tan ^{2} x} d x$
(4 marks)

Question three

a) Find $\int \frac{d x}{x\left(x^{2}+1\right)^{2}}$
(10 marks)
b) A particle moves in a straight line such that its velocity in $m s^{-1}, \mathrm{t}$ seconds after passing a fixed point O is given by $v=3 \cos t-2 \sin t$. Find its displacement from 0 after $\frac{1}{2} \pi s$ and the velocity of the particle at this instant.
(5 marks)
c) Evaluate $\int_{1}^{5} \frac{x}{\sqrt{2 x-1}} d x$
(5 marks)

Question four

a) Find $\int_{0}^{1} \int_{x}^{1} \int_{0}^{y-x} F(x, y, z) d z d y d x$ where $F(x, y, z)=1$.
(6 marks)
b) Find

> i. $\int e^{2 x} \cos x d x$
> ii. $\int \frac{x^{2}}{\sqrt{9-x^{2}}} d x$
(6 marks)
c) If $f(x, y)=e^{x^{2}+x y}$ compute $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$

