# MAASAI MARA UNIVERSITY 

## REGULAR UNIVERSITY EXAMINATIONS <br> 2018/2019 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER

# SCHOOL OF SCIENCE AND INFORMATION SCIENCES BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION (SCIENCE) 

COURSE CODE: CHE 2214<br>COURSE TITLE: ORGANIC CHEMISTRY II

DATE: $16^{\text {TH }}$ APRIL 2019
TIME: 11.00 AM - 1:00 PM

## INSTRUCTIONS TO CANDIDATES

This examination paper consist of two sections A and B. Section A is compulsory. Answer any other TWO questions in section B.

This paper consists of 6 printed pages. Please turn over:

## SECTION A

## Question ONE (30 marks)

a) Differentiate between the following organic chemistry terminologies giving example(s) in each case.
i. Stereospecificity and Regioselectivity
ii. Constitutional isomer and Stereoisomer
iii. Markovnikov's rule and Zaitsev rule
b) Complete the reactions by filling in the missing product or starting material $\mathbf{A} \mathbf{- I}$ and reagents $\mathbf{X}$ and $\mathbf{Y}$. Show stereochemistry where appropriate.

c)
i. Draw three constitutional isomers that have the molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{O}$, in which the oxygen is bonded to two carbon atoms.
ii. Account for the fact that acid-catalyzed dehydration of 3,3-dimethyl-2butanol exclusively yields 2,3-dimethyl-2-butene. Draw arrow pushing mechanism for this reaction. Hint: follows E1 mechanism.
d) Provide IUPAC names or structural formulas for the following compounds. Pay attention to stereochemistry where applicable.
(4 marks)
i.

iii. 2-fluorobutanamide

ii.
iv. 4-chloro-2-ethyl-3-methylcyclopentanol

## SECTION B

## Question TWO (20 marks)

a) For the following short reactions draw the major product. You do not need to show all stereoisomers formed.
( 12 marks)
i.

ii.


iii.
iv.

v.

vi.

b) Propose multi-step synthetic pathway that lead from the starting material to the product given. Show accurate reaction scheme with the proper reagents/conditions and show the major products made along the way. All the carbons in the product originate from the starting material. The arrows indicate multi-step reaction sequence. (Arrow pushing mechanism is not necessary).

c) If acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ is dissolved in isotopically labeled ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{18} \mathrm{H}\right)$ and an acid catalyst is added, where will this label reside in the product? Show work!
(3 marks)

## Question THREE (20 Marks)

a) Propose multi-step synthetic pathway that lead from the starting material to the product given. You need to show an accurate reaction scheme using the proper reagents/conditions and show the major products made along the way. The arrows indicate multi-step reaction sequence (Arrow pushing mechanism is not necessary).
(8 marks)
i)


ii)


b) For the following sequences of reactions, provide the final product.
(8 marks)


1. $\mathrm{H}_{2} \mathrm{SO}_{4}, 160^{\circ} \mathrm{C}$
2. $\mathrm{O}_{3}, \mathrm{Zn}$

3. $\mathrm{KMnO}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HO}^{-}$
4. $\mathrm{SOCl}_{2}$
c) Rank the following molecules based on the indicated property. Rationalize your answer.
(4 marks)
i. In order of decreasing rate of hydration




ii. In order of increasing acidity





## Question FOUR (20 Marks)

a) For the following short reactions draw the major product or missing starting material. You do not need to show all stereoisomers formed.
(12 marks)
i.

ii.

iii.

iv.


1. $\left(\mathrm{BH}_{3}\right)_{2}$
2. $\mathrm{HOOH}, \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$
v.

vi.

b) Complete the reactions by filling in the missing reactants or products $\mathbf{P}-\mathbf{S}$.
(4 marks)

c) Dihydropyran can be used to protect alcohol functional groups as tetrahydropyranyl ethers (THPs) by acid-catalyzed reaction as shown below. This addition reaction is can form both compounds I and II.


Suggest the curved arrow-pushing mechanism for the formation of compound II.
(4 marks)
*Spell an English word (6 letters minimum) using the element symbols $\qquad$

