

MAASAI MARA UNIVERSITY

MAIN EXAMINATION 2018/2019 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER EXAMINATIONS

FOR

THE DEGREE OF BACHELOR SCIENCE IN MATHEMATICS

MAT 416: FUNCTIONAL ANALYSIS I

INSTRUCTIONS TO CANDIDATES

1. This paper contains FOUR (4) questions
2. Answer question ONE (1) and any other TWO (2) questions
3. Do not forget to write your Registration Number.

QUESTION ONE (30MARKS)

a) Define the following terms
i) A Banach space

1mark
ii) Strongly convergence of a sequence

1mark
iii) A Hilbert space

1 mark
iv) Radius of convergence of a series

1 mark
b) Show that an integral operator is a bounded linear transformation. 5marks
c) Show that $\left[\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right),\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}}\right)\right]$ is an orthonormal set

5marks

d) Define a normed linear space and show that if X is an inner product space, then $\|x\|=\langle x, x\rangle^{\frac{1}{2}}$ defines a norm on X
e) In the polynomial space p^{2} the inner product is given as $\langle u, h\rangle=\int_{0}^{1} u(t) h(t) d t$. if $u(t)=t+2$ and $h(t)=t^{2}-2 t+3$. Find
i. $\langle u, h\rangle$
ii. $\|u\|$
iii. $\|h\|$
8marks
e) Given that $x=\sum_{\alpha \in \Lambda}\left|\left\langle x, z_{\alpha}\right\rangle z_{\alpha}\right| \quad \forall x \in H$. Show that $\|x\|^{2}=\sum_{\alpha \in \Lambda}\left|\left\langle x, z_{\alpha}\right\rangle\right|^{2}$ 3marks

QUESTION TWO (20MARKS)

a) Show that the differential operator $T: C_{[a, b]} \rightarrow C_{[a, b]}$ defined by $T x(t)=x^{\prime}(t)$ is an unbounded linear transformation

5marks
b) State and prove the Reisz representation theorem 10marks
c) Let $a \in \square^{3}$. Define $f: \square^{3} \rightarrow \square$ by $f(x)=\langle x, a\rangle$ for all $x \in \square^{3}$. Show that f is a bounded linear functional with $\|f\|=\|a\|$

5marks

QUESTION THREE (20MARKS)

a) Define bounded linear transformation.

3marks
b) Show that $\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}$ 3marks
c) If $(\langle\rangle, X$.$) is an inner product space, show that for all x, y \in X$ we have $|\langle x, y\rangle|^{2} \leq\langle x, y\rangle\langle x, y\rangle$

7marks
d) Show that E is closed with respect to the Hilbert space H if and only if it is a complete orthonormal subset

7 marks

QUESTION FOUR (20MARKS)

a) Find the radius of convergence of the series

$$
\sum_{n=1}^{\infty} \frac{n x^{n}}{2^{n+1}}
$$

5marks

b) State and prove the projection theorem

6marks
c) Show that u for all $f, g \in L_{2}(a, b)$ the $\langle f, g\rangle=\int_{a}^{b} f(x) \bar{g}(x) d x$ defines an inner product on $L_{2}(a, b)$.

4marks
d) Suppose X and Y are Banach spaces and that T is a bounded linear operator from X to Y. If T maps X on to Y, show that $T(G)$ is open in Y whenever G is open in X.

