

MAASAI MARA UNIVERSITY

MAIN EXAMINATION 2018/2019 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER EXAMINATIONS

FOR

THE DEGREE OF BACHELOR SCIENCE IN MATHEMATICS

MAT 416: FUNCTIONAL ANALYSIS I

DATE: 26TH APRIL 2019

TIME: 0830 – 1030 HRS

INSTRUCTIONS TO CANDIDATES

- 1. This paper contains **FOUR** (4) questions
- 2. Answer question **ONE (1)** and any other **TWO (2)** questions
- 3. Do not forget to write your Registration Number.

QUESTION ONE (30MARKS)

a) Define the following terms

i)	A Banach space	1mark
ii)	Strongly convergence of a sequence	1mark
iii)	A Hilbert space	1 mark
iv)	Radius of convergence of a series	1 mark

b) Show that an integral operator is a bounded linear transformation. 5marks

c) Show that
$$\left[\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}\right)\right]$$
 is an orthonormal set

5marks

d) Define a normed linear space and show that if X is an inner product space, then $||x|| = \langle x, x \rangle^{\frac{1}{2}}$ defines a norm on X **5marks**

e) In the polynomial space p^2 the inner product is given as $\langle u,h\rangle = \int_0^t u(t)h(t)dt$. if u(t) = t+2 and $h(t) = t^2 - 2t + 3$. Find

i. $\langle u, h \rangle$ ii. ||u|| iii. ||h|| 8marks e) Given that $x = \sum_{\alpha \in \Lambda} |\langle x, z_{\alpha} \rangle z_{\alpha}| \quad \forall x \in H$. Show that $||x||^2 = \sum_{\alpha \in \Lambda} |\langle x, z_{\alpha} \rangle|^2$ 3marks

QUESTION TWO (20MARKS)

a) Show that the differential operator T: C_[a,b] → C_[a,b] defined by Tx(t) = x'(t) is an unbounded linear transformation 5marks
b) State and prove the Reisz representation theorem 10marks
c) Let a ∈ □ ³. Define f : □ ³ → □ by f(x) = ⟨x,a⟩ for all x ∈ □ ³. Show that f is a bounded linear functional with ||f|| = ||a|| 5marks

QUESTION THREE (20MARKS)

a)	Define bounded linear transformation.	3marks
b)	Show that $ x + y ^2 + x - y ^2 = 2 x ^2 + 2 y ^2$	3marks
c)	If $(\langle . \rangle, X)$ is an inner product space, show that for all $x, y \in X$	we have
	$ \langle x, y \rangle ^2 \leq \langle x, y \rangle \langle x, y \rangle$	7marks

d) Show that *E* is closed with respect to the Hilbert space *H* if and only if it is a complete orthonormal subset
 7marks

QUESTION FOUR (20MARKS)

a) Find the radius of convergence of the series

$$\sum_{n=1}^{\infty} \frac{n x^n}{2^{n+1}}$$
 5marks

6marks

b) State and prove the projection theorem

- c) Show that u for all $f, g \in L_2(a,b)$ the $\langle f, g \rangle = \int_a^b f(x) \overline{g}(x) dx$ defines an inner product on $L_2(a,b)$. **4marks**
- d) Suppose X and Y are Banach spaces and that T is a bounded linear operator from X to Y. If T maps X on to Y, show that T(G) is open in Y whenever G is open in X.
 5marks

//END