

# **MAASAI MARA UNIVERSITY**

## REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER

## SCHOOL OF SCIENCE BACHELOR OF SCIENCE

## COURSE CODE: MAT 414 COURSE TITLE: TOPOLOGY II

DATE: 18-4-2019

TIME: 11:00-13:00HRS

## **INSTRUCTIONS TO CANDIDATES**

Answer Question **ONE** and any other **TWO** questions

This paper consists of **TWO** printed pages. Please turn over.

Page 1 of 3

### **OUESTION ONE - 30 MARKS**

| a)         | Define a $T_1$ -space, hence deduce whether the topological space $(X, \tau)$ where                                                                                                                                                                                                                                                                              |           |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|            | $\tau = \{X, \emptyset, \{a, b\}, \{b, c\}\}$ is a topology defined on $X = \{a, b, c\}$ is a T <sub>1</sub> -space.                                                                                                                                                                                                                                             | (4 marks) |
| b)         | Prove that every $T_4$ -space is a Tychonoff space.                                                                                                                                                                                                                                                                                                              | (6 marks) |
| c)         | Define first countability property, hence show that every metric space satisfies first countability axiom.                                                                                                                                                                                                                                                       | (5 marks) |
| <b>d</b> ) | Show that any finite subset of a topological space $(X, \tau)$ is compact.                                                                                                                                                                                                                                                                                       | (5 marks) |
| e)<br>f)   | Show that connectedness is a topological property.<br>Define a homotopy between continuous functions <i>f</i> and <i>g</i> defined on R.<br>Hence, show that if $f, g: \mathbb{R} \to \mathbb{R}$ are any two continuous real functions<br>and $F: \mathbb{R} \times [0,1] \to \mathbb{R}$ is a function defined by $F(x,t) = (1-t) \cdot f(x) + t \cdot g(x)$ , | (5 marks) |
|            | then $F$ is a homotopy between $f$ and $g$ .                                                                                                                                                                                                                                                                                                                     | (5 marks) |

### **QUESTION TWO – 20 MARKS**

|    | Prove that every subspace of a second countable space is second countable.<br>Prove that the class $C(X, R)$ of all real-valued continuous functions on a | (3 marks) |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|    | completely regular $T_1$ -space separates points.                                                                                                         | (5 marks) |
| c) | Define a separable space, hence show that the discrete space $(X, \tau)$ is separable                                                                     |           |
|    | if and only if X is countable.                                                                                                                            | (4 marks) |
| d) | Prove that a topological space $(X, \tau)$ is a $T_1$ -space if and only if every singleton                                                               |           |
|    | set of X is closed.                                                                                                                                       | (8 marks) |
|    |                                                                                                                                                           |           |

### **<u>OUESTION THREE – 20 MARKS</u>**

| a) | Show that any compact subset of a $T_2$ -space is closed.                                       | (3 marks) |
|----|-------------------------------------------------------------------------------------------------|-----------|
| b) | Show that if the function $f$ is homotopic to $g$ ( $f \square g$ ), then $g$ is also homotopic |           |
|    | to $f(g \Box f)$ .                                                                              | (5 marks) |
| c) | Prove that a continuous image of a path connected set is path connected.                        | (5 marks) |
| d) | Prove that regularity is a hereditary property.                                                 | (7 marks) |

#### **<u>OUESTION FOUR - 20 MARKS</u>**

| a) | Prove that the union of finite compact subsets of a topological space is also             |           |
|----|-------------------------------------------------------------------------------------------|-----------|
|    | compact.                                                                                  | (5 marks) |
| b) | Differentiate between a $T_3$ -space and $T_4$ -space, hence show that every $T_4$ -space |           |
|    | is a T <sub>3</sub> -space.                                                               | (8 marks) |
| c) | Show that first countability property is a topological property.                          | (7 marks) |

//END