MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR THIRD YEAR TWO SEMESTER

SCHOOL OF SCIENCE

 Bsc. MATHEMATICS
COURSE CODE: MAT 411 COURSE TITLE: FIELD THEORY

INSTRUCTIONS TO CANDIDATES

1. Answer Question ONE and any other TWO questions.
2. All Examination Rules Apply.

Question 1 [30 marks]

1 (a). State the meaning and give an example of:
i. a field of characteristic zero.
ii. an infinite field of characteristic p.
iii. an algebraic extension of a field F.

1 (b). Determine the vector space dimension of the field $\mathbb{Q}(\sqrt{2}, i)$ over \mathbb{Q} and exhibit three different bases.

1 (c). Prove that $\mathbb{Q}(\sqrt{5}, \sqrt{11})=\mathbb{Q}(\sqrt{5}+\sqrt{11})$
[4 marks]
1 (d). Express $\frac{1}{x_{1}^{2}}+\frac{1}{x_{2}^{2}}+\frac{1}{x_{3}^{2}}$ in terms of elementary symmetric functions in x_{1}, x_{2}, x_{3}.
[4 marks]

1 (e). Determine the splitting field of:
i. The polynomial $x^{2}+x+1$ over \mathbb{Q}.
ii. The polynomial $x^{2}+x+1$ over \mathbb{Z}.
[5 marks]

1 (f). Give the definition of a solvable group and state its significance in Field Theory and solution of polynomial equations. [5 marks]

Question 2 [20 marks]

E, F and K are three fields such that F is a finite extension of E and K is a finite extension of F.
i. Prove that

$$
[K: E]=[F: E][K: F] .
$$

ii. Illustrate the result in (i) with $E=\mathbb{Q}$ and F and K specified with $[F: E]=3$ and $[K: F]=2$.
iii. Deduce from (i) that if a and b are algebraic over E of degree m and n respectively, then a / b is algebraic over E of degree $\leq m n$.

Question 3 [20 marks]

3 (a). Factorize

$$
x^{9}-1 \text { in } \mathbb{Q}[x]
$$

Hence, or otherwise determine the splitting field of $x^{6}+x^{3}+1$ over \mathbb{Q}.

3 (b). Let β denote the complex number $(\sqrt[4]{2}+i)^{-1}$.
i. Determine the minimal polynomial of β over \mathbb{Q}.
ii. Prove that $\mathbb{Q}(\sqrt[4]{2}, i)=\mathbb{Q}(\beta)$.
iii. Write down two other elements a and b in $\mathbb{Q}(\sqrt[4]{2}, i)$ such that

$$
\mathbb{Q}(\beta)=\mathbb{Q}(a)=\mathbb{Q}(b) .
$$

Question 4 [20 marks]

4 (a). Show that the polynomial $x^{3}+x+1$ is irreducible over \mathbb{Z}_{5}.
(b). Show that every element of the field $\frac{\mathbb{Z}_{5}[x]}{\left(x^{3}+x+1\right) \mathbb{Z}_{5}[x]}$ is of the form

$$
r_{0}+r_{1} x+r_{2} x^{2}+M \text { where } M=\left(x^{3}+x+1\right) \mathbb{Z}_{5}[x] .
$$

(C). Let α be a root of $x^{3}+x+1$, now considered as a polynomial in $\mathbb{Q}[x]$.

Express $\frac{1}{\alpha}$ and $\frac{1}{\alpha^{2}}$ as polynomials in α.

Question 5 [20 marks]

Let K be an extension of F where K and F are fields and let $G(K, F)$ denote the group of automorphisms of K that leave F fixed elementwise.
a. Prove that
i. $\quad G(K, F)$ is a subgroup of the group of all automorphisms of K.
ii. $\quad o(G(K, F)) \leq[K: F]$
b. Give an example where the inequality in a(ii) is strict and an example where the equality holds.
//END

