

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR SECOND YEAR TWO SEMESTER

SCHOOL OF SCIENCE BSC. MATHEMATICS

COURSE CODE: MAT 2215 COURSE TITLE: GROUP THEORY 1

DATE: 25TH APRIL, 2019

TIME: 0830 - 1030 HRS

INSTRUCTIONS TO CANDIDATES

- 1. Answer Question **ONE** and any other **TWO** questions.
- 2. All Examination Rules Apply.

QUESTION 1 [30 MARKS]

1 a). Give an example of:

- i. an associative binary operation on a set.
- ii. anon-associative binary operation.

In each case specify the operation and the set, and support your claim.

[5 Marks]

1 b). (i.) Give the meaning of the statement:

"G is a non –commutative group with two generators".

- i. Show that S_3 a non-commutative group.
- ii. Give an example of a group of order 4 with two generators.

[6 Marks]

1 c). State the ring axioms and give an example of a ring with a finite number of elements. [5 Marks]

1 d). i. Write down the elements of the field \mathbb{Z}_5 and construct a multiplication table for the field.

ii. Solve the equation $x^2 = 4$ over \mathbb{Z}_5 . [6Marks]

1 e). Give the definition of:

- i. Subgroup.
- ii. Coset.
- iii. Factor group.

Illustrate using a group of your choice.

[8 Marks]

QUESTION 2 [20 MARKS]

Let $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ be matrices over \mathbb{Q} :

- i. Determine A^2 , B^2 , AB, BA, $(AB)^{15}$, $(AB)^n$.
- ii. List all elements of multiplicative group V generated by A and .
- iii. If $\begin{bmatrix} 0 & b \\ c & 0 \end{bmatrix}^2 = B$, determine possible integer values of *b* and *c* and the order of the group generated by *A* and $\begin{bmatrix} 0 & b \\ c & o \end{bmatrix}$.

QUESTION 3 [20 MARKS]

- 3 a. State and prove Lagrange an finite groups.
- 3 b. Let $D = \langle a, b | a^2 = b^3 = e$, $ba = ab^2 > b^3$
 - i. List the elements of D.
 - ii. List all the subgroups of D.
 - iii. Choose a subgroup of order 2, of *D* and use it to illustrate Lagrange's theorem.

QUESTION 4 [20 MARKS]

- 4 a. Let *R* be the ring $<\mathbb{Z}_{12}$; $+_{12}$, $\times_{12}>$:
- i. Write down all the non-zero divisors of zero in R.
- ii. Determine all the elements with multiplicative inverses and show that they form a group.
- iii. Determine the ideals of R.
- iv. For each ideal in iii. Determine the corresponding factor ring.

4 b. Let *C* be the matrix $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ in the ring *R* of 2 × 2 matrices

Over \mathbb{Z} ;

- i. Write down 5 matrices *D* such that CD = 0 and $D \neq 0$.
- ii. Determine whether the set of all such matrices D such that CD = 0 is a right ideal of the ring R.

QUESTION 5 [20 MARKS]

5 a. Give an example of:

- i. A finite field with *n* elements where 5 < n < 9.
- ii. A field with an infinite number of elements.
- iii. A field with an uncountable number of elements.

5 b. Let $\{f(x) = x^2 + x + 1\}$ be a polynomial in $\mathbb{Z}_2[x]$, and

let α be a root of f(x).

- i. Show that $\{0, 1, \alpha, \alpha+1\}$ is a field with 4 elements.
- ii. Solve the equation $x^3 1 = 0$ in the field.

5 c. A function:

F: $\mathbb{Z}_{12} \to \mathbb{Z}_{12}$ is given by f(x) = 4x.

Determine the image of f and the set of elements that

are mapped to zero.

//END