MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR SECOND YEAR TWO SEMESTER

SCHOOL OF SCIENCE BSC. MATHEMATICS

COURSE CODE: MAT 2215 COURSE TITLE: GROUP THEORY 1

1. Answer Question ONE and any other TWO questions.
2. All Examination Rules Apply.

QUESTION 1 [30 MARKS]

1 a). Give an example of:
i. an associative binary operation on a set.
ii. anon-associative binary operation.

In each case specify the operation and the set, and support your claim.
[5 Marks]
1 b). (i.) Give the meaning of the statement:
" G is a non-commutative group with two generators".
i. Show that S_{3} a non-commutative group.
ii. Give an example of a group of order 4 with two generators. [6 Marks]
$1 \mathrm{c})$. State the ring axioms and give an example of a ring with a finite number of elements.

1 d). i. Write down the elements of the field \mathbb{Z}_{5} and construct a multiplication table for the field.
ii. Solve the equation $x^{2}=4$ over \mathbb{Z}_{5}.
[6Marks]
$1 \mathrm{e})$. Give the definition of:
i. Subgroup.
ii. Coset.
iii. Factor group.

Illustrate using a group of your choice.

QUESTION 2 [20 MARKS]

Let $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ be matrices over \mathbb{Q} :
i. Determine $A^{2}, B^{2}, A B, B A,(A B)^{15},(A B)^{n}$.
ii. List all elements of multiplicative group V generated by A and .
iii. If $\left[\begin{array}{ll}0 & b \\ c & 0\end{array}\right]^{2}=B$, determine possible integer values of b and c and the order of the group generated by A and $\left[\begin{array}{ll}0 & b \\ c & o\end{array}\right]$.

QUESTION 3 [20 MARKS]

3 a. State and prove Lagrange an finite groups.
3 b. Let $D=<a, b \mid a^{2}=b^{3}=e, b a=a b^{2}>$
i. List the elements of D.
ii. List all the subgroups of D.
iii. Choose a subgroup of order 2, of D and use it to illustrate Lagrange`s theorem.

QUESTION 4 [20 MARKS]

4 a . Let R be the ring $\left\langle\mathbb{Z}_{12} ;+_{12}, \times_{12}\right\rangle$:
i. Write down all the non-zero divisors of zero in R.
ii. Determine all the elements with multiplicative inverses and show that they form a group.
iii. Determine the ideals of R.
iv. For each ideal in iii. Determine the corresponding factor ring.

4 b. Let C be the matrix $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ in the ring R of 2×2 matrices
Over \mathbb{Z};
i. Write down 5 matrices D such that $C D=0$ and $D \neq 0$.
ii. Determine whether the set of all such matrices D such that $C D=0$ is a right ideal of the ring R.

QUESTION 5 [20 MARKS]

5 a. Give an example of:
i. A finite field with n elements where $5<n<9$.
ii. A field with an infinite number of elements.
iii. A field with an uncountable number of elements.

5 b. Let $\left\{f(x)=x^{2}+x+1\right\}$ be a polynomial in $_{2}[\mathrm{x}]$, and
let α be a root of $f(x)$.
i. Show that $\{0,1, \alpha, \alpha+1\}$ is a field with 4 elements.
ii. Solve the equation $x^{3}-1=0$ in the field.

5 c. A function:
$\mathrm{F}: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{12}$ is given by $f(x)=4 x$.
Determine the image of f and the set of elements that are mapped to zero.
//END

