

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER

SCHOOL OF SCIENCE AND INFORMATION SCIENCES BACHELOR OF SCIENCE IN CHEMISTRY AND BACHELOR OF EDUCATION SCIENCE

COURSE CODE: CHE 2215 COURSE TITLE: BASIC THERMODYNAMICS

DATE: 25 ${ }^{\text {TH }}$ APRIL 2019
TIME: 1100-1300 HRS
INSTRUCTIONS TO CANDIDATES

1. Answer Question ONE and any other TWO questions
2. Avogardro's costant $=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
3. Gas constant $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}=0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
4. $1 \mathrm{~atm}=1.01325 \times 10^{5} \mathrm{Nm}^{-2}$
5. Gravitational acceleration $=10 \mathrm{NKg}^{-1}$

QUESTION ONE (30 marks) Compulsory

a) Describe the molecules of a perfect gas based on the following parameters;
(i) Motion
(ii) Intermolecular distance
(iii) Intermolecular forces
b) (i) Define pressure and state its SI units
(ii) Calculate the pressure in Pascal exerted by a mass of 1.5 Kg pressing through the point of a pin whose cross-section area is 3.0×10 ${ }^{-2} \mathrm{~mm}^{2}$
c) (i) State Charles's law
(ii) A balloon is inflated to a volume of 2.50 L at room temperature, what will be the new volume if the temperature is lowered to $-25^{\circ} \mathrm{C}$ at constant pressure
d) State the volume occupied by 13.7 g of chlorine- 71 gas at $45^{\circ} \mathrm{C}$ and 745 mmHg pressure
(5 mks)
(e) A gaseous mixture contains 320 mg methane (16.04 g), 175 mg $\operatorname{argon}(39.95 \mathrm{~g})$ and 225 mg neon $(20.18 \mathrm{~g})$. The partial pressure of neon at 300 K is 8.87 kPa . Calculate the volume and the total pressure of the mixture
(f) Define the following terms as used in thermodynamics;
(i) The system
(ii) The surrounding
(iii) The universe
(g) 1 mole of CaCO_{3} is heated in an open container to $700^{\circ} \mathrm{C}$ at which temperature it is fully decomposed. How much work has been done in the process?
(h) The internal energy, U , per mole of monoatomic perfect gas is given by:

$$
\mathrm{U}=\mathrm{U}(0)+3 / 2 \mathrm{RT}
$$

Where $U(0)$ is the internal energy at 0 K . Calculate the molar specific heat at constant volume, $C_{\mathrm{v}, \mathrm{m}}$

QUESTION TWO (20 marks)

a) Define the following terms and state their respective SI units;
(i) Heat capacity
(ii) Molar heat capacity (2 mks)
(iii) Specific heat capacity
(2 mks)
b) Calculate the heat energy produced in a resistance wire filament in contact with the water if a current of 1 A from a 50 V source is passed through the filament for 5 minutes
c) What is meant by the standard state of a substance? (2 mks)
d) The density of phosphorus (30.97 g) vapour at $310^{\circ} \mathrm{C}$ and 775 mmHg is $2.64 \mathrm{~g} / \mathrm{L}$. What is the molecular formula of the phosphorus? (3 mks)
e) Distinguish between diffusion and effusion of gases
f) Consider an adiabatic reversible expansion of 0.02 mole Ar initially at $25^{\circ} \mathrm{C}$ from $0.50 \mathrm{dm}^{3}$ to $1.00 \mathrm{dm}^{3}$. The molar heat capacity of Ar at constant volume is $12.48 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. Calculate the work done.
(5 mks)

QUESTION THREE (20 marks)

a) Calculate the height of a column of liquid Y (density $=0.879 \mathrm{gcm}^{-3}$) in metres required to exert a pressure of 0.970 atm (3 mks)
b) In order for a gas filled balloon to rise in air, the density of the gas in the balloon must be less than that of air.
(i) Consider air to have a molar mass of $28.96 \mathrm{~g} \mathrm{~mol}^{-1}$. Determine the density of air at $25^{\circ} \mathrm{C}$ and 1 atm in gL^{-1}
(3 mks)
(ii) Show by calculation that a balloon filled with Carbon dioxide at temperature of $25^{\circ} \mathrm{C}$ and 1 atm pressure could not be expected to rise in air
(3 mks)
c) At 300 K temperature and 20 atm pressure, the compression factor of a gas is 0.86 . Calculate;
(i) Volume occupied by 8.2 mmol of the gas under these conditions
(ii) An approximate value of the second virial constant B at 300 K (3 mks)
d) Explain the following observations;
(i) The pressure of a fixed mass of a gas is inversely proportional to its volume at constant temperature
(2 mks)
(ii) The volume of a fixed mass of a gas is directly proportional to the absolute temperature
(2 mks)
e) State the standard conditions of temperature and pressure

QUESTION FOUR (20 marks)

a) Given the following data;

$$
\begin{aligned}
& S_{(s)}+\frac{3}{2} O_{2(g)} \xrightarrow{\text { yields }} S O_{3(g)} \quad \Delta_{\mathrm{c}} H^{\theta}=-395.2 \mathrm{Kjmol}^{-1} \\
& 2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)} \xrightarrow{\text { yields }} 2 \mathrm{SO}_{3(g)} \Delta_{\mathrm{c}} \mathrm{H}^{\theta}=198.2 \mathrm{Kjmol}^{-1}
\end{aligned}
$$

Calculate $\Delta_{\mathrm{r}} H^{\theta}$ for the reaction;

$$
\begin{equation*}
\mathrm{S}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \xrightarrow{\text { yields }} \mathrm{SO}_{2(\mathrm{~g})} \tag{3mks}
\end{equation*}
$$

b) When 2 moles of sulphur dioxide gas react completely with 1 mole of oxygen gas to form 2 moles of sulphur trioxide gas at $25^{\circ} \mathrm{C}$ and a constant pressure of $1 \mathrm{~atm}, 198 \mathrm{kj}$ of energy are released as heat. Calculate ΔU and ΔH
(4 mks)
c) Naphthalene burns in oxygen according to the equation;

$$
\mathrm{C}_{10} \mathrm{H}_{\mathrm{s(s)}}+12 \mathrm{O}_{2(g)} \xrightarrow{\text { yields }} 10 \mathrm{CO}_{2(g)}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

The standard enthalpy for this reaction is $\Delta_{c} H^{\theta}=-5157 \mathrm{Kjmol}^{-1}$. When 120 mg of naphthalene was burnt in a bomb calorimeter, the temperature was raised by 3.05 K .

Calculate the heat capacity of the calorimeter, given the molar mass of naphthalene is $128.18 \mathrm{gmol}^{-1}$
(4 mks)
d) Five moles of an ideal gas at 298 K contracts reversibly and isothermally from a pressure of 10 bar to 1 bar. What are the values of $w, q, \Delta U$ and ΔH
(4 mks)
e) Water is heated to boiling under pressure of 1.0 atm . When an electric current of 0.5 A from a 12 V supply is passed for 300 s through a resistance in thermal contact with the water, it is found that 0.798 g of water is vaporized. Calculate the molar internal energy and enthalpy changes of the boiling water
(5 mks)

//END

