

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER

SCHOOL OF SCIENCE BACHELOR OF SCIENCE IN PHYSICS

COURSE CODE: PHY 2212

COURSE TITLE: LABORATORY IV

DATE: TIME:

INSTRUCTIONS TO CANDIDATES

- Answer Question ONE and any other TWO.
- Use of sketch diagrams where necessary and brief illustrations are encouraged.
- Read the instructions on the answer booklet keenly and adhere to them. *This paper consists of seven printed pages. Please turn over.*

QUESTION ONE [COMPULSORY] (20 MARKS)

Consider figure 1 below.

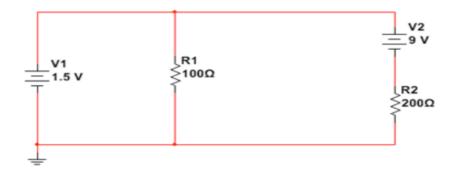


Figure 1

Kirchhoff's Current Law states that the current entering a point in a circuit is equal to the summation of the currents exiting. Kirchhoff's Voltage Law states that the summation of all voltage drops in a closed loop must equal to zero which is a result of the electrostatic field being conservative. (Conventional) current flowing through the cell has a positive voltage (gains energy) whereas current going through a resistor has a negative voltage (loses energy). This information is simplified in figure 2.

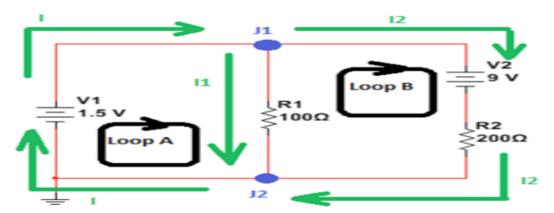


Figure 2

- a) Express the current I in terms of I_1 and I_2 (1 mark)
- b) Use the Kirchhoff's Laws described above to solve for the following;
- a) (i) I_1 (2 marks)
 - (ii) I_2 (3 marks)

(iii) I (1 mark)

b) Determine the voltage drops V_{R1} and V_{R2} across each resistor (i) V_{R1} (1 mark)

(ii) V_{R2} (1 mark)

- c) You are required to implement the above circuit during a practical session.
 - (i) Re-sketch the diagram illustrating how you should configure the DMM to measure voltage across R_1 and R_2 (2 marks)
 - (ii) Re-sketch the diagram illustrating how you should configure the DMM to measure current through R_1 and R_2 (2 marks)
 - (iii) State **two** precautions that you should observe in this experiment (2 marks)
 - (iv) State **two** sources of error in this experiment and how each can be mitigated (4 marks)
- (d) State one application of the circuits represented in figure 1 (1mark)

QUESTION TWO (10 MARKS)

The following is part of a student's report of an experiment to investigate the variation of current I with potential difference V for a semiconductor diode. "I put the diode in forward bias as shown in the circuit diagram. I increased the potential difference across the diode until a current flowed. I measured the current flowing for different values of the potential difference. I recorded the following data."

V(V)	0.60	0.64	0.68	0.72	0.76	0.80
I (mA	2	4	10	18	35	120

(a) What was wrong with the student's report?

(1 mark)

(b) Draw a circuit diagram used by the student.

(2 marks)

- (c) Plot a graph of I_D against V_D to show how the current varies with the potential difference. (4 marks)
- (d) Estimate from your graph the junction voltage of the diode. (1mark)
- (e) The student then put the diode in reverse bias and repeated the experiment. What changes did the student make to the initial circuit? (2 marks)

QUESTION THREE (10 MARKS)

Consider the electrical schematic drawing shown in figure 3 below.

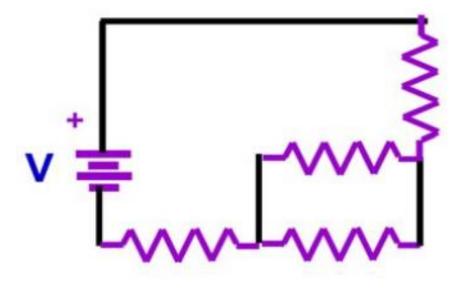


Figure 3

- (a) On the breadboard (figure 5), show how the electrical circuit corresponding to the above schematic drawing should appear. Assume all resistors have the same resistance R and that the power supply has a potential difference V. (5 marks)
- (b) Express the current flowing through the entire circuit in terms of V and R only. (5 marks)

QUESTION FOUR (10 MARKS)

The circuit in figure 4 below shows four light-emitting diodes connected to a resistor R and a 6 V a.c. supply of frequency 1 Hz.

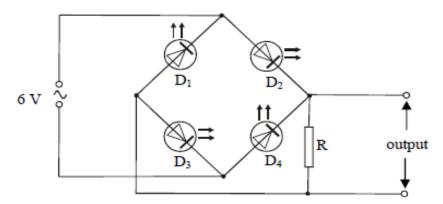


Figure 4

(a) Which was the likely aim of this experiment?	(1 mark)				
(b) What is observed when the circuit is operating?	(2 marks)				
(c) What is observed when the frequency of the a.c. supply is increased to					
50 Hz?	(1 mark)				
(d) Give one function of the resistor R	(1 mark)				
(e) How was the output voltage displayed? (1 m					
(f) Draw graphs to show the differences between the input voltage and the					
output voltage.	(3 marks)				
(g)It is noticed that the output voltage is lower than the input v	voltage.				
Explain why.	(1 mark)				

CANDIDATE'S REG. NUMBER:	

After answering on figure 5, detach this page and insert in your answer booklet

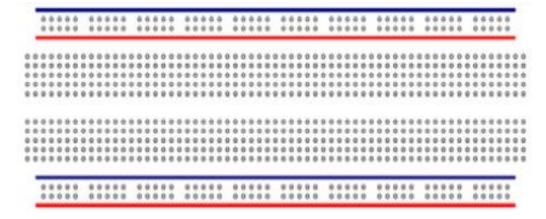
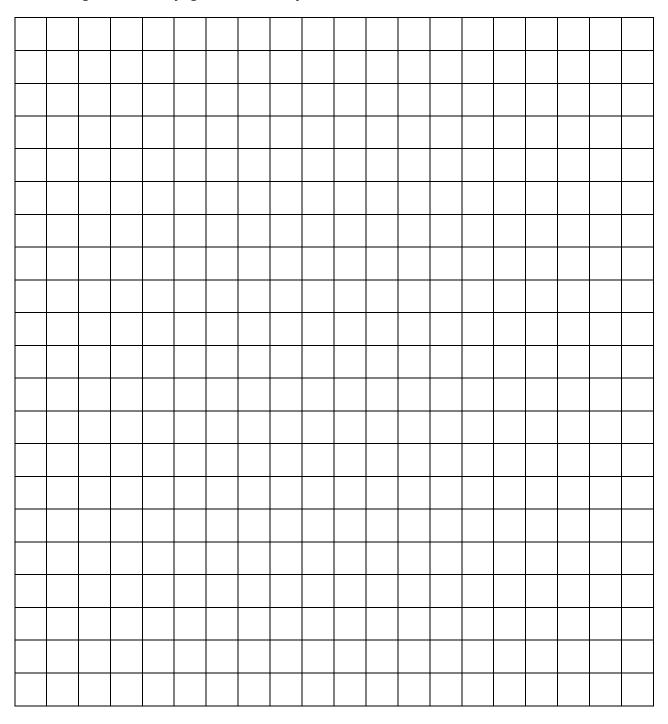



Figure 5

CANDIDATE'S REG. NUMBER:	
--------------------------	--

Plot the graph **only** on this sheet and do your calculations in the answer booklet! After answering, detach this page and insert in your answer booklet

