

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR *FIRST* YEAR *SECOND* SEMESTER

SCHOOL OF SCIENCE BACHELOR OF SCIENCE IN PHYSICS

COURSE CODE: PHY 1206

COURSE TITLE: LABORATORY II

DATE:

TIME:

INSTRUCTIONS TO CANDIDATES

- Answer Question **ONE** and any other TWO.
- Use of sketch diagrams where necessary and brief illustrations are encouraged.
- Read the instructions on the answer booklet keenly and adhere to them. *This paper consists of seven printed pages. Please turn over.*

QUESTION ONE [COMPULSORY] (20 MARKS)

An experiment was carried out to measure the refractive index of a substance. The experiment was repeated a number of times and the following data was recorded.

Table 1

i °	30	40	50	55	60	65	70
r °	19	26	30	33	36	38	40

a) Describe, with the aid of a diagram, how the student obtained the angle of refraction. (4 marks)

b) Why was the experiment repeated?

(1 mark)

(7 marks)

(2 marks)

- c) Using the recorded data, draw a suitable graph
- d) Explain how your graph verifies Snell's law.
- e) Using your graph, find the refractive index of the substance (2 marks)
- f) Explain why using a single data point from the recorded data above would not give conclusive results of the refractive index (2 marks)
- g) The student did not record any values of i below 30°, explain two reasons why?
 (2 marks)

QUESTION TWO (10 MARKS)

The following is part of a student's report of an experiment to measure the focal length of a converging lens.

"I found the approximate focal length of the lens to be 15 cm. I then placed an object at different positions in front of the lens so that a real image was formed in each case."

The table shows the measurements recorded by the student for the object distance u and the image distance v.

Table 2

u(cm)	20.0	25.0	35.0	45.0
v(cm)	66.4	40.6	27.6	23.2

(a) What was wrong with the student's report? (1 mark)

(b) How did the student find an approximate value for the focal length of the lens? (2 marks)

(5 marks)

- (c) Use a graph to determine the value for the focal length of the lens
- (d) What difficulty would arise if the student placed the object 10 cm from the lens? (1 mark)
- (e) Give **one** precaution that should be taken when measuring the image distance. (1 mark)

QUESTION THREE (10 MARKS)

In a certain experiment, you are given the following procedure:

- 1) Install a table rod with a rod clamp near its top. Suspend a helical spring from the clamp with the large end up.
- 2) Attach a 50 g weight hook with a 50g slot mass on it to the spring. Record the initial mass of 100 g as m_1 . The parameter m will represent the total mass on the spring.
- 3) Place the meter rule vertically alongside the hanging mass. Measure the elongation of the spring and record it as x₁. Always be sure to measure starting at the same place, either on the table or on the clamp.
- 4) Add a 50g slot mass to the hook and record m₂ (150 g). Read the meter stick and record x₂. Repeat, finding x₃, x₄, x₅, and x₆ with total masses 200g, 250g, 300g, and 350g. Record all the masses and elongations on the form provided.

a) What was the likely aim of this experiment?	(1 mark)
b) Prepare a data sheet to capture the required data	(2 marks)

- c) If you plot a graph using the likely data obtained as per the procedure, and you find that it is not a straight line, what does this tell you about the spring? (2 marks)
- d) State two possible sources of error for the data points in this experiment? (2 marks)
- e) State **one** application of this experiment in real life situations**(1 mark)**
- f) Consider a set of two identical springs each of spring constant k connected in parallel (figure 1) to a single mass. What would you expect the total spring constant to be of the system? Why? (Hint: think about the spring force as a vector.) (2 marks)

Figure 1

QUESTION FOUR (10 MARKS)

The set-up (figure 2) is an alternative approach for determination of the Young's Modulus.

(a) What is the name of the approach described in the figure above?

(1 mark)

- (b) Write a brief procedure on how you can determine the Young's Modulus using the above set-up (5 marks)
- Using the relevant equations, show the relationship between the Young's Modulus and Hooke's Law (4 marks)

Figure 2

CANDIDATE'S REG. NUMBER:

Plot the graph **only** on this sheet and do your calculations in the answer booklet! After answering detach this page and insert in your answer booklet

CANDIDATE'S REG. NUMBER:

Plot the graph **only** on this sheet and your calculations in the answer booklet! After answering detach this page and insert in your answer booklet

		<u> </u>		<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>