

MAASAI MARA UNIVERSITY

MAIN EXAMINATION 2018/2019 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER EXAMINATIONS

FOR
THE DEGREE OF BACHELOR OF SCIENCE
MAT 2213: CLASSICAL MECHANICS

DATE :
TIME:

DURATION: 2HRS

INSTRUCTIONS TO CANDIDATES

1. This paper contains FOUR (4) questions
2. Answer question ONE (1) and any other TWO (2) questions
3. Do not forget to write your Registration Number.

QUESTION ONE (30 MARKS)

a) Show that the acceleration a of a particle which travels along a space curve with velocity \mathbf{v} is given by
$\mathbf{a}=\frac{d v}{d t} \mathbf{T}+\frac{v^{2}}{R} \mathbf{N}$ where \mathbf{T} is the unit tangent vector to the space curve,
\mathbf{N} is the unit principal normal and R is the radius of curvature.
(4mks)
b) Find the impulse developed by a force given by $\mathbf{F}=4 t \mathbf{i}+\left(6 t^{2}-2\right) \mathbf{j}+12 \mathbf{k}$ from

$$
\mathrm{t}=0 \text { to } \mathrm{t}=2 .
$$

c) A particle moves from rest in a circular path of a circle of radius 20 cm . If its tangential speed is $40 \mathrm{~cm} / \mathrm{sec}$, calculate its angular velocity, angular acceleration and normal acceleration.
d) The angular momentum of a particle is given as a function of time t by

$$
\begin{equation*}
\Omega=6 t^{2} \mathbf{i}-(2 t+1) \mathbf{j}+\left(12 t^{3}-8 t^{2}\right) \mathbf{k} . \text { Find the torque at time } \mathrm{t}=1 . \tag{3mks}
\end{equation*}
$$

e) An object of mass m is dropped from a height H above the ground. Prove that if air resistance is negligible, then it will reach the ground in

$$
\text { i. in a time } \sqrt{2 H / g}
$$

ii. with speed $\sqrt{2 g H}$
f) Given a space curve C with position vector
$\mathbf{r}=3 \cos 2 t \mathbf{i}+3 \sin 2 t \mathbf{j}+(8 t-4) \mathbf{k}$. Find the
i. Curvature
ii. Unit principal normal to any point of the space curve
g) A particle of mass m moves along the x axis under the influence of a conservative force field having potential $\mathrm{V}(\mathrm{x})$. If the particle is located at positions x_{1} and x_{2} at respective times t_{1} and t_{2}, prove that if E is the total energy,
$t_{2}-t_{1}=\sqrt{\frac{m}{2}} \int_{x_{1}}^{x_{2}} \frac{d x}{\sqrt{E-V(x)}}$

QUESTION TWO (20 MARKS)

a) At time $\mathrm{t}=0$ a parachutist having weight of magnitude mg is located at $\mathrm{z}=0$ and is travelling vertically downward with speed v_{0}. If the force or air resistance acting on the parachute is proportional to the instantaneous speed, find the
i. Speed
ii. Distance travelled
iii. Acceleration at any time $t>0$
iv. Show that the parachutist approaches a limiting speed given by $\frac{m g}{\beta}$., where β is an arbitrary constant.
b) Find the work done in moving a particle once around a circle C in the xy plane, if the circle has center at the origin and radius 3 and if the force field is given by

$$
\begin{equation*}
\mathbf{F}=(2 x-y+z) \mathbf{i}+\left(x+y-z^{2}\right) \mathbf{j}+(3 x-2 y+4 z) \mathbf{k} \tag{8mks}
\end{equation*}
$$

QUESTION THREE (20 MARKS)

a) Determine the motion of a simple pendulum of length L and mass m assuming small vibrations and no resisting forces. Hence determine the period and amplitude and frequency of vibrations.
b) A cannon has its maximum range given by $R_{\max }$. Prove that
i. The height reached in such a case is $\frac{1}{4} R_{\max }$
ii. the time of flight is $\sqrt{2 R_{\text {max }} / g}$

QUESTION FOUR (20 MARKS)

a) i) Show that $\mathbf{F}=\left(2 x y+z^{3}\right) \mathbf{i}+x^{2} \mathbf{j}+3 x z^{2} \mathbf{k}$ is a conservative force field.

> (3mks)
ii) Find the scalar potential.
(4mks)
iii) Find the work done in moving an object in this field from $(1,-2,1)$ to $(3,1,4)$.
b) A spring of negligible mass, suspended vertically from one end, is stretched distance of 20 cm when a 5 g mass is attached to the other end. The spring and mass are placed on a horizontal frictionless table with the suspension point fixed. The mass is pulled away a distance 20 cm beyond the equilibrium position 0 and released. Find
i. The differential equation and initial conditions describing. the motion.
ii. The position at any time t,
iii. The amplitude, period and frequency of the vibrations.

