

MAASAI MARA UNIVERSITY
 MAIN EXAMINATION 2018/2019 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER EXAMINATIONS

FOR
THE DEGREE OF BACHELOR OF SCIENCE

MAT 426: METHODS II

DATE:
TIME:
DURATION: 2hrs

INSTRUCTIONS TO CANDIDATES

1. This paper contains FOUR (4) questions
2. Answer question ONE (1) and any other TWO (2) questions
3. Do not forget to write your Registration Number.

QUESTION ONE (30 MARKS)

a) Solve the following differential equation in terms of the Bessel's function
$x y^{\prime \prime}-3 y^{\prime}+x y=0$
(5mks)
b) Let $\bar{A}^{p}=\frac{\partial \bar{x}^{p}}{\partial x^{q}} A^{q}$. Prove that $A^{q}=\frac{\partial x^{q}}{\partial \bar{x}^{p}} \bar{A}^{p}$
(3mks)
c) Show that the contraction of the outer product of the tensors A^{p} and B_{q} is an invariant.
(5mks)
d) Use Neumann series method to solve the integral equation $y(x)=1+\lambda \int_{0}^{1} x z y(z) d z$
(6mks)
e) Prove the Rodrigues' Formula $P_{l}(x)=\frac{1}{2^{l} l!} \frac{d^{l}}{d x^{l}}\left(x^{2}-1\right)^{l}$
(6mks)
f) Show that $L_{n}(x)=\frac{e^{x}}{n!} \frac{d^{n}}{d x^{n}}\left(x^{n} e^{-x}\right)$
(5mks)

QUESTION TWO (20 MARKS)

a) Prove that the two independent solutions of Bessel's equation may be taken to be
$J_{n}(x)$ and $y_{n}(x)=\frac{\cos n \pi J_{n}(x)-J_{-n}(x)}{\sin n \pi}$ for all values of n ,
b) Prove that

$$
\frac{\exp \{-x t /(1-t)\}}{(1-t)}=\sum_{n=0}^{\infty} L_{n}(x) t^{n}
$$

(5mks)

QUESTION THREE (20 MARKS)

a) Given the generating function

$$
\left(1-2 x t+t^{2}\right)^{-\frac{1}{2}}=\sum_{t=0}^{\infty} t^{l} P_{l}(x)
$$

Prove the recurrence relations
i. $\quad l P_{l}(x)=(2 l-1) x P_{l}(x)-(l-1) P_{l-1}(x) \quad l \geq 2$
ii. $\quad l P_{l}(x)=x P_{l}^{\prime}(x)-P_{l-1}^{\prime}(x)$
(6mks)
(6mks)
b) Find the eigen values and corresponding eigen functions of the following Fredholm equation

$$
\begin{equation*}
y(x)=\lambda \int_{0}^{\pi} \sin (x+z) y(z) d z \tag{8mks}
\end{equation*}
$$

QUESTION FOUR (20 MARKS)

a) Use the Fredholm theory to show that the resolvent kernel to the integral equation $y(x)=x^{-3}+\lambda \int_{a}^{b} x^{2} z^{2} y(z) d z$ is $\frac{5 x^{2} z^{2}}{5-\lambda\left(b^{5}-a^{5}\right)}$ and hence solve the equation. (8mks)
b) Show that the orthogonality properties of Laguerre polynomial is given by $\int_{0}^{\infty} e^{-x} L_{n}(x) L_{m}(x) d x=\delta_{n, m}$.
c) Suppose $A_{r}^{p q}$ and B_{t}^{s} are tensors. Prove that $C_{r t}^{p q s}=A_{r}^{p q} B_{t}^{s}$ is also a tensor.

