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QUESTION ONE   (30 MARKS) 

a) What do you understand by the following terms 

i). Field                                                      (2marks) 

ii).  Algebra                             (2marks) 

iii). Borel  Algebra                            (2marks) 

iv). Measure                                         (2marks) 

v). Probability measure                            (2marks) 

 

b) Let  1  2………be a sequence of collections of subsets of Ω, such that n n+1 

for each n 

i). Suppose that each F1 is an algebra. Prove that 


1i

i    is also an algebra     

                           (3marks) 

ii). Suppose that each 1   is algebra. Show (by counter example) that 


1i

i     

might not be  Algebra               (3marks)                                                                                             

c) Let ( 1, 1, 1)  be Lebesque measure on [0; 1]. Consider a second probability 

triple       ( 2, 2, 2)   defined as follows: 2=(1,2),  2  consists of all subsets  2 

and , 2 is defined by , 2{1}=
3

1
  , , 2{2}=

3

2
   and additivity. Let ( , , )   be the 

product measure of  ( 1, 1, 1)   and ( 2, 2, 2)   . 

i). Express each of  ,   and  as explicitly as possible              (3marks) 

ii). Find a set A  such that (A)= 
4

3
       (3marks) 

d) What does the following statements mean 

i). Converge almost surely          (2 marks) 

ii). Converge almost everywhere       (2 marks) 

iii). Converge in Probability         (2 marks) 

iv). Converge in rth mean              (2 marks)   
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QUESTION TWO (20 MARKS) 

The following theorem describes the relationship among all the convergence modes. Prove 

each of them 

i). If XX
sa

n

.

  then XX
p

n           (2marks) 

ii). If XX
p

n  , then XX
sa

nk

.

  for some subsequence nkX     (3marks) 

iii). If XX
r

n  , then XX
p

n          (2marks) 

iv). If XX
p

n    and 
r

nX  is uniformly integrable, then XX
r

n     (5marks) 

v). If XX
p

n  , and lim 
p

n

r

nn XEXE sup , then XX
r

n     (4marks) 

vi). If XX
p

n  , than XX
d

n          (4marks) 

 

 

 

QUESTION THREE (20 MARKS) 

a) Let (An)n  N  be a sequence of events from the probability space ( , , )   (Borel-

Cantelli Lemma). Prove that 

i). If 





1

,)(
n

nAP  then   0suplim 


n
n

AP               (4marks) 

ii). If (An)n      is independent and 



Nn

nAP


,)( then   1suplim 


n
n

AP     

                                                                                                                                  (6marks)  

b) Prove Weak Law of large number, if nXXX ,........., 21  are IID with mean 

    XEandXEso   ,,,  then 
p

nX 


           (10 marks) 
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QUESTION FOUR   20 MARKS 

a) Prove Strong Law of large number, if nXXX ,........., 21  are IID with mean  then 


sa

nX
.




               (10marks) 

b) Prove Radon- Nikodym theorem i.e. Let ( , , )   be  finite measure space, and 

let v  be a measurable on ( , )   with v . Then there exists a measurable 

function 0X  such that 
A

XdAv )(  for all A . X is unique in the sense that if 

another measurable function Y also satisfies the equation, then YX                 

        (10marks)            
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