

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR THIRD YEAR FIRST SEMESTER SCHOOL OF SCIENCE BACHELOR OF SCIENCE COURSE CODE: MAT 2214

COURSE TITLE: NUMERICAL ANALYSIS I

DATE: 11TH DECEMBER, 2018

TIME: 1100 - 1300 HOURS

INSTRUCTIONS TO CANDIDATES

Answer ALL questions in Section A and ANY Other TWO questions from Section B

DO NOT MAKE ANY WRITING ON THIS QUESTION PAPER

This paper consists of **THREE** printed pages. **Please turn over.**

SECTION A (30 MARKS)

Question one (30 Marks)

- a. Use the intermediate value theorem to show that $x^5 2x^3 + 3x^2 1 = 0$ has a solution in the interval [0,1] **(3 Marks)**
- b. Determine
 - i. The second and (4 Marks)
 - ii. The third Taylor polynomial for the function $f(x) = \cos x$ about $x_0 = 0$ and use these polynomial to approximate $\cos(0.01)$ (4 Marks)

iii. Use the third Taylor polynomial and its remainder term to approximate $\int_0^{0.1} \cos x \, dx$ (6 Marks)

- c. To determine the number of iterations necessary to solve $f(x) = x^3 + 4x^2 10 = 0$ with accuracy $\varepsilon = 10^{-3}$ using $a_1 = 1$ and $b_1 = 2$ requires finding an integer N that satisfies; $|p_N p| \le 2^{-N}(b a) = 2^{-N} < 10^{-3}$ Hence or otherwise determine the number of iterations required to obtain an approximation accurate to within 10^{-3} (5 Marks)
- d. Use the bisection method to find solution accurate to within 10^{-2} for $x^3 7x^2 + 14x 6 = 0$ on [0,1] (8 Marks)

SECTION B (40 MARKS)

Question two (20 Marks)

- a. Using the Newton Raphson method, approximate a solution to the equation $\cos x x = 0$ on $\left[0, \frac{\pi}{2}\right]$ (10 Marks)
- b. Using the modified Newton Raphson method, find the solutions accurate to within 10^{-7} to the problem $f(x) = e^x x 1$ for $0 \le x \le 1$ [HINT: $p_0 = 1$] (10 Marks)

Ouestion three (20 Marks)

a. Compute up through third differences of the discrete function displayed by the y_k column in the table below

k	y_k	Δy_k	$\Delta^2 y_k$	$\Delta^3 y_k$
0	1			
1	8			
2	27			
3	64			
4	125			
5	216			
6	343			
7	512			

(5 Marks)

b. Using finite difference table show that:

i.
$$\Delta^3 y_0 = y_3 - 3y_2 + 3y_1 - y_0$$

(5 Marks)

ii.
$$\Delta^4 y_0 = y_4 - 4y_3 + 6y_2 - 4y_1 + y_0$$

(5 Marks)

c. Calculate differences through the fifth order in the table below

			0					
k	0	1	2	3	4	5	6	7
x_k	0	0	0	1	1	0	0	0

(5 Marks)

Ouestion four (20 Marks)

a. Given the function f at the following values:

	х	1.8	2.0	2.2	2.4	2.6
Ī	f(x)	3.12014	4.42569	6.04241	8.03014	10.46675

approximate $\int_{1.8}^{2.6} f(x) dx$ using:

i. Trapezoidal Rule

(5 Marks)

ii. Simpson's Rule

(5 Marks)

b. Using the nodes, $x_0 = 2$, $x_1 = 2.5$ and $x_2 = 4$. Find the second Lagrange interpolating polynomial for $f(x) = \frac{1}{x}$ (10 Marks)

****END****