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ABSTRACT 26 

 27 

Bats are among the most diverse animals on the planet and harbor numerous 28 

bacterial, viral, and eukaryotic symbionts. The interplay between bacterial 29 

community composition and parasitism in bats is not well understood and may 30 

have important implications for studies of similar systems. Here we present a 31 

comprehensive survey of dipteran and haemosporidian parasites, and 32 

characterize the gut, oral, and skin microbiota of Afrotropical bats. We identify 33 

significant correlations between bacterial community composition of the skin and 34 

dipteran ectoparasite prevalence across four major bat lineages, as well as links 35 

between the oral microbiome and malarial parasitism, suggesting a potential 36 

mechanism for host selection and vector-borne disease transmission in bats. 37 

Mirroring recent studies of host-microbiome co-speciation in mammals, we find 38 

a weak correlation between chiropteran phylogenetic distances and bacterial 39 

community dissimilarity across the three anatomical sites, suggesting that host 40 

environment is more important than shared ancestry in shaping the composition 41 

of associated bacterial communities.  42 

 43 
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 49 

SIGNIFICANCE 50 

 51 

Animals rely on bacterial symbionts for numerous biological functions, such as 52 

digestion and immune system development. Increasing evidence suggests that 53 

host-associated microbes may play a role in mediating parasite burden. This 54 

study is the first to provide a comprehensive survey of bacterial symbionts from 55 

multiple anatomical sites across a broad taxonomic range of Afrotropical bats, 56 

demonstrating significant associations between the bat microbiome and parasite 57 

prevalence. This study provides a framework for future approaches to systems 58 

biology of host-symbiont interactions across broad taxonomic scales, which will 59 

allow for the recognition of the interdependence between microbial symbionts 60 

and vertebrate health in the study of wild organisms and their natural history. 61 

 62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 

 70 
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\body 73 

 74 

INTRODUCTION 75 

 76 

Humans and other animals rely on bacterial symbionts for numerous 77 

biological functions, such as digestion and immune system development (1, 2). 78 

Many studies have found significant associations between host phylogeny (shared 79 

common ancestry) and bacterial community composition (3, 4), while others 80 

have identified spatiotemporal variables as significant drivers of host-microbe 81 

associations over the course of individual lifespans (5-7). The influence of 82 

microbes on their hosts may be context dependent, such that the presence of a 83 

particular microbe may be beneficial under one set of ecological conditions and 84 

harmful under another. Thus, patterns of association between vertebrates and 85 

bacterial symbionts provide a unique lens through which to explore evolutionary 86 

and ecological phenomena. 87 

Recognition of the interdependence between microbial symbionts and 88 

vertebrate health has led to a growing paradigm shift in the study of wild 89 

organisms and their natural history. Vertebrate species not only exhibit inherent 90 

life history characteristics, but serve as hosts to myriad bacteria, archaea, viruses, 91 

fungi, and eukaryotic organisms that abound in their environments. Many 92 

relationships between eukaryotic parasites and hosts have ancient origins, and 93 

the same may be true for host-microbial associations. Indeed, it is possible that 94 

bacterial symbionts of vertebrate hosts interact with eukaryotic parasites, viruses, 95 

or fungal symbionts in ways that could ultimately shape host evolution (8). For 96 
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example, evidence from human and anthropophilic mosquito interactions 97 

suggests that the skin microbiome can influence vector feeding preference, 98 

thereby affecting transmission patterns of mosquito-borne pathogens (such as 99 

WNV, yellow fever, dengue, malaria, etc.), and ultimately imposing selective 100 

pressures on human populations - indeed, positive selection of malaria-protective 101 

genes can be seen in the human genome (9). Despite the potential significance of 102 

such interactions between hosts, microbes, and pathogen-transmitting vectors, 103 

they have not been well studied in most wild vertebrate systems. 104 

 Bats (Mammalia: Chiroptera) are an important system for comparison of 105 

the relative contributions of evolutionary and ecological factors driving host-106 

symbiont associations. In addition to being one of the most speciose orders of 107 

mammals (second only to the order Rodentia), bats frequently live in large 108 

colonies, are long-lived, and volant, granting them access to a wide geographic 109 

range relative to their non-volant mammalian counterparts. The associations of 110 

diverse eukaryotic parasites (e.g. dipteran insects, haemosporidia, helminths) 111 

within numerous bat lineages have been well-characterized (10-13). Furthermore, 112 

bats have received increasing attention due to their role as putative vectors of 113 

human pathogens (e.g. Ebola, Marburg, SARS (14, 15)). Indeed, numerous 114 

serological surveys have supported the role of Afrotropical bats as reservoirs for a 115 

number of viruses (16-18). Taken together, these features make bats an appealing 116 

and tractable model for studying the interaction of bacterial symbionts and non-117 

bacterial parasites and pathogens. 118 

 In this study, we conduct the first broad-scale study of Afrotropical bat-119 

associated microbes. We test associations between bacterial community 120 
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composition in the gastrointestinal tract, skin, and oral cavities from nine 121 

families and nineteen genera of bats.  We pair this information with host-parasite 122 

associations between bats and ectoparasites in the superfamily Hippoboscoidea 123 

(obligate hematophagous dipteran insects), and haemosporidian (malarial) 124 

parasites putatively vectored by these hippoboscoid insects. Using a combination 125 

of machine learning, network theory, and negative binomial distribution models, 126 

we test the hypothesis that host-associated bacterial communities predict 127 

prevalence of parasitism by obligate dipteran and malarial parasites.  128 

 129 

RESULTS 130 

 131 

1) Ectoparasite and malarial parasite prevalence among Afrotropical bats 132 

  133 

Sampling was conducted across 20 sites in Kenya and Uganda from July-134 

August of 2016. Sites ranged from sea level to ~2500m in elevation (Fig. 1; Table 135 

S1). We collected gut, oral, and skin samples for bacterial community 136 

characterization from a total of 495 individual bats, comprising 9 families, 19 137 

genera, and 28 recognized species. Bat families with the greatest representation 138 

included Hipposideridae (n = 80), Miniopteridae (n = 116), Rhinolophidae (n = 139 

88), and Pteropodidae (n =  106). All host and parasite vouchers are accessioned 140 

at the Field Museum of Natural History (Chicago, IL, USA) (Table S2). 141 

Miniopterid bats experienced the highest prevalence of both ectoparasitism (M. 142 

minor, 89%) and malarial parasitism (M. minor, 67%) (Table 1). Bats with 143 

similarly high ectoparasite prevalence at the host species level included 144 
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Rhinolophus eloquens (79% prevalence), Stenonycteris lanosus (62%), and 145 

Triaenops afer (60%). Unlike miniopterid bats, these bat species did not harbor 146 

any detectable malarial parasites (Table 1).  147 

 148 

2) Bacterial richness of bat skin drastically exceeds that of gut or oral 149 

communities 150 

 151 

 Across all samples, 51,136 Exact Sequence Variants (ESVs) were identified 152 

using Deblur (19). Gut microbial communities exhibited the lowest overall 153 

diversity (9,804 ESVs), followed by oral (13,629 ESVs), and skin (46,904 ESVs), 154 

the latter being significantly greater than gut or oral (p < 2.2e-16, Kruskal-Wallis; 155 

Bonferroni corrected p-value p < 1e-113, Dunn’s test) (Fig. 2A). Aggregate mean 156 

observed ESVs by host genus were 70, 93, and 531 for gut, oral, and skin samples, 157 

respectively (Table 2). As with observed ESV richness counts, the Shannon index 158 

of bat skin microbial communities was significantly greater than that of either gut 159 

or oral microbiota (p < 2.2e-16, Kruskal-Wallis; Bonferroni corrected p-value p < 160 

1e-119, Dunn’s Test) (Fig. 2B). Based on weighted UniFrac distances, measures of 161 

intraspecific beta dispersion revealed a continuum of dissimilarities across all 162 

host species (Fig. 3). Mean beta dispersion among anatomical sites differed 163 

significantly (p < 1.2e-7, Kruskal-Wallis; Bonferroni corrected p-value p < 0.01, 164 

Dunn’s Test). Meausres of intraspecific beta dispersion among unweighted 165 

UniFrac and Bray-Curtis distances also showed a continuum of dissimilarities 166 

across host species, and exhibited significant differences in mean beta dispersion 167 

across anatomical sites (Fig. S1). 168 
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  169 

3) Microbial communities significantly correlate with geographic locality, 170 

anatomical site, and host taxonomy, but not host phylogeny 171 

 172 

Permutational analysis of variance (PERMANOVA) identified geographic 173 

locality, host taxonomy, and anatomical sampling site (gut, oral, skin) as 174 

significant factors explaining variation in three independent measures of 175 

microbial beta diversity (Bray-Curtis, unweighted UniFrac, and weighted 176 

UniFrac) (p < 0.001, ADONIS) (Table 4). Secondary analysis of sites by elevation 177 

revealed that bats at higher elevations tended to host increased alpha diversity 178 

across gut, oral, and skin microbiomes (p < 2e-16, linear regression) (Fig. S2). In 179 

general, gut microbiota were dominated by Proteobacteria (Enterobacteraceae) 180 

and Firmicutes (Bacillaceae). Oral microbiota were dominated by Proteobacteria 181 

(Neisseriaceae, Pasteurellaceae). The oral microbiota of several insect bat 182 

families (Miniopteridae, Nycteridae, Rhinolophidae) were enriched for 183 

Firmicutes in the Mycoplasmataceae family, while the oral microbiota of fruit 184 

bats (Pteropodidae) were enriched for Firmicutes in the Streptococaccea family. 185 

Similar to gut and oral microbiota, skin also showed a high relative abundance of 186 

Proteobacteria (Moraxellaceae, Enterobacteraceae) and Firmicutes (Bacillaceae), 187 

with a pronounced increase in relative abundance of Actinobacteria and 188 

Bacteroidetes (Fig. 4). 189 

Linear regression analyses of host phylogenetic distances and microbial 190 

community dissimilarity (unweighted UniFrac (uf) and weighted UniFrac (wuf) 191 

distances) revealed weak correlations for gut (uf: R2 = 0.013, p < 0.05; wuf: R2 = 192 
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0.002, p = 0.752; R2 = 0.0007, p = 0.2643; R2 = 0.0015, p = 0.522), oral (R2 = 193 

0.009; p < 0.05), and skin (R2 = 0.024; p < 0.005) microbiota and host 194 

evolutionary relatedness (Fig. S3). 195 

 196 

4) The microbiome is associated with parasitism in African bats 197 

 198 

To test for significant associations between bacterial communities and 199 

eukaryotic parasites (obligate ectoparasitic dipteran insects, and obligate 200 

endoparasitic malarial parasites), we employed a combination of machine 201 

learning techniques, network analyses, and negative binomial distribution 202 

models (see methods). PERMANOVA analysis identified ectoparasite status and 203 

malarial infection status as significant predictors of bacterial beta diversity 204 

dissimilarity among skin and oral microbiota, respectively (p < 0.001, ADONIS). 205 

Tests of three independent measures of beta diversity (weighted UniFrac, 206 

unweighted UniFrac, and Bray-Curtis) produced congruent results, with the 207 

exception of oral microbiome, which was not significantly predictive of malarial 208 

infection based on unweighted UniFrac analysis (Table 3). 209 

Supervised machine learning analyses (random forests; see methods) 210 

produced models that could classify the anatomical source of microbial 211 

communities and the host genus of gut, oral, and skin microbial samples with 212 

reasonable accuracy (ratio of baseline to observed classification error ≥2; i.e. 213 

random forest models performed at least twice as well as random). Random 214 

forest models also performed well when classifying ectoparasite status based on 215 
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skin bacterial community composition, but less well for classification of malarial 216 

status based on oral bacterial community composition (Table 5). 217 

Following the application of statistical and machine learning approaches, 218 

we employed network analyses to characterize the co-occurrence topology of 219 

microbial communities (in terms of the relative abundance of co-occurring ESVs) 220 

across the skin microbiota of our four most well-sampled bat families 221 

(Hipposideridae (n = 80), Miniopteridae (n = 116), Rhinolophida (n = 88), and 222 

Pteropodidae (n = 106)). Network analyses produced strikingly consistent results, 223 

revealing a significant decrease in cluster size (p < 0.05, Mann-Whitney-224 

Wilcoxon rank sum test) and median node degree (p < 0.05, t test), as well as 225 

reduced network connectivity for parasitized bats from three of the four bat 226 

families examined (Fig. 5; Fig. S4). 227 

 228 

5) Bacterial taxa on skin correlated with presence or absence of obligate dipteran 229 

ectoparasites 230 

 231 

Negative binomial distribution (e.g. DESeq) models applied to skin 232 

microbiota in four well-sampled bat families (Hipposideridae, Miniopteridae, 233 

Rhinolophidae, Pteropodidae) identified a number of ESVs that were 234 

significantly associated with either ectoparasitized or non-ectoparasitized bats 235 

(Fig. 6). Overall, we identified 89 and 24 ESVs significantly associated with 236 

parasitized and non-parasitized bats, respectively (Table S3). Bacterial classes 237 

with the greatest representation among significant results were Actinobacteria 238 

(16 families), Gammaproteobacteria (11 families), Bacilli (5 families), and 239 
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Alphaproteobacteria (3 families). ESVs significantly enriched in parasitized bats 240 

from at least three out of four bat families included Mycobacteraceae 241 

(Actinobacteria), and Xanthomonadaceae (Gammaproteobacteria). ESVs 242 

significantly enriched in parasitized bats from at least two out of four bat families 243 

included Hyphomicrobiaceae (Alphaproteobacteria), Alcaligenaceae 244 

(Betaproteobacteria), Moraxellaceae (Gammaproteobacteria), Planococcaceae 245 

(Bacilli), Flavobacteraceae (Flavobacteria), Halobacteraceae (Halobacteria), and 246 

Chitinophagaceae (Saprospirae) (Fig. 6). 247 

 248 

DISCUSSION 249 

 250 

 The bacterial diversity we observed among gut, oral, and skin microbiota 251 

of bats fall within ranges similarly observed in other vertebrate groups (3, 20-23). 252 

Although few studies have simultaneously compared gut, oral, and skin 253 

microbiota from the same individuals, our data refelct an apparent trend in the 254 

literature of skin bacterial diversity among vertebrates significantly 255 

outnumbering gut or oral bacterial diversity (24-27). Our data corroborate the 256 

findings of Nishida and Ochman (3), revealing no relationship between 257 

chiropteran phylogeny and gut bacterial community dissimilarity. We found the 258 

same absence of phylogenetic signal among oral and skin microbial communities. 259 

As suggested in other studies of volant vertebrates (bats and birds), convergent 260 

adaptations driven by the evolution of flight may be influencing the nature and 261 

composition of microbial communities in both bats and birds (28-30).  262 
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Microbial community specificity can be assessed as a function of 263 

intraspecific variation in dissimilarity (beta dispersion), where low dispersion 264 

suggests a tight and perhaps co-evolutionary link between hosts and symbionts, 265 

whereas high dispersion suggests more random associations between hosts and 266 

symbionts (31). Measures of beta dispersion among bats revealed a continuum 267 

for all three anatomical sites, with oral bacterial commuities showing lower levels 268 

of beta dispersion (for weighted UniFrac distances) than gut or skin communities 269 

(Fig. 3). This continuum suggests a possible gradient of host-symbiont specificity 270 

across different bat species that may be influenced by evolutionary history or host 271 

ecology. Given that we found no association between bacterial community 272 

dissimilarity and host phylogenetic distance, variation in beta dispersion is more 273 

likely a reflection of host ecology than evolutionary history. 274 

Similar to recent studies in North American bats (32), we found sampling 275 

locality to be a significant factor influencing skin, gut and oral microbial 276 

composition (Table 4). Furthermore, we observed an apparent trend in 277 

increasing Shannon diversity and observed ESV richness along an elevational 278 

gradient that was most pronounced for skin microbiota (Fig. S2). A positive 279 

correlation between bacterial richness and elevation has been observed in studies 280 

of amphibian skin (33) and montane soil, and this pattern may be the result of 281 

climatological and other abiotic factors (e.g. pH) found along elevational 282 

gradients (34, 35). 283 

 We found the general composition of gut microbiota in East African bats 284 

to be similar to that of Neotropical bats, with Proteobacteria being the dominant 285 

bacterial phylum present (36). Regardless of diet (insectivorous or frugivorous), 286 
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the distal bat gut is dominated by bacteria in the family Enterobacteriaceae 287 

(Phylum: Proteobacteria), though fruit bats do have an increased relative 288 

abundance of bacteria in the family Clostridiaceae (Phylum: Firmicutes) relative 289 

to insectivorous bats. In their study of neotropical bats, Phillips et al. (37) noted 290 

an increased relative abundance of Lactobacillales in frugivorous bats, and we 291 

note a similar pattern among pteropodid fruit bats in this study, which exhibited 292 

a slightly higher proportion of Streptococcaceae (Order: Lactobacillales) relative 293 

to insectivorous bats. Overall, the domination of the chiropteran gut by 294 

Proteobacteria differs markedly from other mammalian gut microbiomes, which 295 

are generally dominated by Firmicutes (21, 38, 39).  296 

Among most bat families, the oral microbiome was dominated by 297 

Pasteurellaceae (Phylum: Proteobacteria), and in some cases a high relative 298 

abundance of bacteria in the families Mycoplasmataceae (in nycterids), 299 

Neisseriaceae (in vespertilionids and rhinonycterids), and Streptococcaceae (in 300 

pteropodids) was also observed. Although the oral microbiome has received less 301 

attention than that of the gut, several studies have found diverse Pasteurellaceae 302 

and Neiserria lineages present in the oral microbiota of animals, including 303 

domestic cats (20) and marine mammals (40). Pasteurellaceae lineages have also 304 

recently been documented in the oral microbiota of Tasmanian devils (23, 41). In 305 

humans, Pasteurallaceae (genera Haemophilus and Aggregatibacter) and 306 

Neisseriaceae (genera Neisseria, Kingella, and Eikenella) play an important role 307 

in the formation supragingival plaque (22). Though these bacterial groups are 308 

present in lower proportions in other animals relative to bats, their presence in a 309 

broad range of host taxa suggest a conserved evolutionary niche. 310 
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 Our analysis identified links between ectoparasitism, malarial parasitism, 311 

and bacterial communities on the skin and in oral cavities, respectively. Network 312 

analyses identified consistent, stable, and species-rich clusters of bacteria on the 313 

skin of non-ectoparasitized bats, compared to relatively disconnected and 314 

apparently transient bacteria on the skin of bats harboring ectoparasites. This 315 

result mirrors that found in human-mosquito interactions, in which individuals 316 

with lower bacterial diversity on the skin are significantly more attractive to 317 

blood-seeking mosquitoes than individuals with higher diversity (42). In humans, 318 

skin bacteria play a known role in attracting mosquitoes via their production of 319 

volatile organic compounds (VOCs), and studies have shown that variation in 320 

skin microbial community composition can increase or decrease human 321 

attractiveness to blood-seeking mosquitoes (42-44). Similar mechanisms may be 322 

at play in the bat-ectoparasite system, particularly given the phylogenetic 323 

proximity of hippobscoid bat parasites to mosquitoes.  324 

Several bacterial families exhibited significant associations with presence 325 

of ectoparasitism in bats based on DESeq analyses. Bacteria found across 326 

multiple host families included (but were not limited to) Alcaligenaceae, 327 

Chitinophagaceae, Flavobacteriaceae, Moraxellaceae, Mycobacteriaceae 328 

(Mycobacterium spp.), and Xanthomonadaceae. In many cases, these bacterial 329 

families were associated with parasitism in some bat families, and absence of 330 

parasitism in others, suggesting a potential mechanism by which ectoparasites 331 

might be distinguishing between “correct” and “incorrect” hosts. As suggested by 332 

human-mosquito interaction studies (42, 43, 45), bacteria positively associated 333 

with increased rates of blood-feeding dipteran host selection may be producing 334 
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VOCs on which the insects rely to identify their hosts. Bacteria that are negatively 335 

associated with such insects may be consuming the products of the former, or 336 

may be producing VOCs of their own that mask those of the former (suggested by 337 

Verhulst et al. (42)). To better understand the mechanisms underlying these 338 

correlations in wild populations, future experiments should consider including 339 

sampling of VOCs in vivo. 340 

PERMANOVA analyses identified associations between the oral 341 

microbiome and malarial parasite prevalence among bats in the family 342 

Miniopteridae, although these associations were less robust than those of the skin 343 

bacteria and ectoparasitism. Upon further exploration of this potential 344 

association, we identified a single bacterial ESV in the genus Actinobacillus (99% 345 

similar to A. porcinus based on NCBI blastn search) as significantly reduced in 346 

malaria-free bats (baseMean 7.61, -24.2 log2FoldChange, p = 1.7E-20). Network 347 

analyses indicated no significant differences in connectivity or node degree 348 

distribution (results not shown). Because no other bat groups experienced rates 349 

of malarial parasitism adequate for statistical analyses, we were unable to explore 350 

this relationship further. Future studies that incorporate greater sampling of 351 

malaria-positive species may reveal more robust microbial associations, as have 352 

been documented in numerous experiments with controlled rodent and human 353 

malaria infections (45-47). 354 

 Although we cannot ascertain causality of differences in the microbial 355 

composition of skin in this study, our results support the hypothesis that these 356 

differences may provide a mechanism by which ectoparasites can locate or 357 

distinguish hosts. Alternatively, observed differences in microbial composition 358 
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could result from microbial transfer from parasites to hosts. Given the known 359 

effect of locality and apparent absence of host phylogenetic signal in microbial 360 

community composition of skin, one possible explanation is that local 361 

environmental variables play a greater role in determining host-bacteria 362 

associations in bats. Indeed, in North America, multiple bat species have been 363 

found to share many bacterial genera with soil and plant material (32). Thus, 364 

local conditions and bacterial composition of bat roosts are likely playing an 365 

important role in driving the composition of skin bacteria, and via mechanisms 366 

similar to the camouflage hypothesis, could subsequently influence which 367 

individuals become parasitized.  368 

 369 

METHODS 370 

 371 

1) Sampling 372 

 373 

Sampling for this study was conducted from the eastern coast of Kenya to the 374 

northern border of Uganda during August-October 2016 (Fig. 1; Table S1, S2). 375 

Eight families and nineteen genera of bats (order: Chiroptera) were collected as 376 

part of bird and small mammal biodiversity inventories. All sampling was 377 

conducted in accordiance with the Field Museum of Natural History IACUC and 378 

voucher specimens are accessioned at the Field Museum of Natural History 379 

(Table S2). Blood samples were collected and screened for haemosporidia and 380 

haemosporidian taxonomy was assigned using previously described molecular 381 

methods (13). Following blood sampling, ectoparasites were removed with 382 
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forceps and placed directly into 95% EtOH; ectoparasites taxonomy was assigned 383 

based on morphological features. For the purposes of analysis with microbiome 384 

data, ectoparasite and malarial status were each scored separately as 1 (present) 385 

or 0 (absent). Gut, skin, and oral samples were taken for each bat for microbial 386 

analyses. Gut samples consisted of fecal material collected directly from the distal 387 

end of the colon using sterilized tools, and preserved on Whatman® FTA® cards 388 

for microbiome analyses. For oral microbiome analyses, we preserved both 389 

buccal swabs in lN2 and tongue biopsies in 95% ethanol (EtOH). Comparison of 390 

ESV diversity obtained from paired subsets of each sample type revealed greater 391 

diversity recovered from tongue biopsies (data not shown); tongues were 392 

therefore used for characterization of oral microbiomes in this study. Lastly, skin 393 

samples from five regions of the body (ear, wing membrane, tail membrane, 394 

chest, back) were collected and pooled in 95% EtOH using sterile Integra® 395 

Miltex® 5mm biopsy punches. The goal of sampling from five body regions was 396 

to maximize bacterial diversity recovered from the external skin surface of each 397 

individual. We based our storage media selections on the recent study by Song et 398 

al. (48). Host sequencing and phylogenetic methods are described in Fig. S2. 399 

 400 

2) Microbiome sequencing, characterization, and parasite association 401 

 402 

DNA extractions were performed on gut, tongue, and skin samples using the 403 

MoBio PowerSoil 96 Well Soil DNA Isolation Kit (Catalog No. 12955-4, MoBio, 404 

Carlsbad, CA, USA). We used the standard 515f and 806r primers (49-51) to 405 

amplify the V4 region of the 16S rRNA gene, using mitochondrial blockers to 406 
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reduce amplification of host mitochondrial DNA. Sequencing was performed 407 

using paired-end 150 base reads on an Illumina HiSeq sequencing platform. 408 

Following standard demultiplexing and quality filtering using the Quantative 409 

Insights Into Microbial Ecology pipeline (QIIME2) (52) and vsearch8.1 (53), 410 

ESVs were identified using the Deblur method (19) and taxonomy was assigned 411 

using the Greengenes Database (May 2013 release; http://greengenes.lbl.gov). 412 

Libraries containing fewer than 1000 reads were removed from further analyses. 413 

Negative controls all contained fewer than 1000 reads and were filtered at this 414 

step. We did not rarefy the data, based on the recommendations of McMurdie 415 

and Holmes (54). Data were then subset for analyses according to sample type, 416 

host genus, and locality (or some combination thereof). Site-specific analyses 417 

were only performed for sites from which five or more individual bats were 418 

sampled.  We calculated alpha diversity for each sample type (gut, oral, skin) 419 

using the Shannon index, and measured species richness based on actual 420 

observed diversity. Significance of differing mean values for each diversity 421 

calculation was determined using the Kruskal-Wallis rank sum test, followed by a 422 

post-hoc Dunn test with bonferroni corrected p-values. Three measures of beta 423 

diversity (unweighted UniFrac, weighted UniFrac, and Bray-Curtis) were 424 

calculated using relative abundances of each ESV (calculated as ESV read depth 425 

over total read depth per library). Significant drivers of communitity similarity 426 

were identified using the ADONIS test with Bonferroni correction for multiple 427 

comparisons using the R package Phyloseq (55). Complete code for microbiome 428 

analyses can be found at http://github.com/hollylutz/BatMP. 429 

 430 
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3) Machine learning and network analyses 431 

 432 

A supervised machine learning approach was used to produce random forests 433 

(RF) for the classification of different variables. RFs were constructed using 500 434 

decision trees and subsets of ESV data via the supervised_learning.py script 435 

implemented in QIIME (52). We tested the ability of RFs to accurately classify 1) 436 

anatomical site (using all data), 2) host genus (using gut, oral, or skin microbial 437 

data separately), 3) ecotparasite status (using skin microbial data), and 4) 438 

malarial status (using oral microbial data). RF performance was assessed by 439 

comparing the out-of-bag estimated error (OOB) with baseline (random) error. If 440 

the ratio of OOB to baseline error was less than or equal to two, the model was 441 

considered to perform reasonably well, as it performed at least twice as well as 442 

random (56). To reconstruct microbial networks for skin and oral bacterial 443 

communities within bat family groupings (which were further sub-divided into 444 

parasitized or non-parasitized), we utilized the R package Sparse Inverse 445 

Covariance Estimation for Ecological Association Inference (SPIEC-EASI) (57). 446 

All network datasets were filtered to contain only ESVs that appeared in at least 447 

three individuals within each respective dataset. Network results produced with 448 

SPIEC-EASI were summarized using the R packages CAVnet (58) and igraph 449 

(59). Network stability was assessed by sequentially removing network nodes 450 

(ordered by betweeness centrality and degree) and observing natural connectivity 451 

(i.e. eigenvalue of the graph adjacency matrix) as nodes are removed. To 452 

determine which, if any, bacterial ESVs were significantly associated with 453 

ectoparasite or malarial prevalence, we performed analyses based on the negative 454 
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binomial distribution of ESVs relative abundance, utilizing the R package 455 

DESeq2 (60). False discovery rate (FDR) was calculated using the Benjamini-456 

Hochberg method (default method in DESeq), and p-values were adjusted 457 

accordingly. 458 

 459 
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 667 

 668 

FIGURE LEGENDS 669 

 670 

Figure 1. Sampling localities and elevation, grouped by district. Colors 671 

correspond to elevation, and white numbers and size of points correspond to 672 

number of bats collected. 673 

 674 

Figure 2. Alpha diversity of Exact Sequence Variants (ESVs) by anatomical sites, 675 

including (A) Observed richness, (B) Shannon index of diversity, (C) ESVs shared 676 

between anatomical sites. Asterisks indicate significant differences between 677 

groups (Dunn’s Test, Bonferroni corrected p-value p < 0.0001). 678 

 679 

Figure 3. Intraspecific variation across anatomical sites measured as beta 680 

dispersion of weighted UniFrac distances. Dotted lines indicate mean dispersion 681 

for anatomical groupings; numbers in parentheses indicate sample size per bat 682 

species. White and gray boxes correspond to the chiropteran suborders 683 

Yangochiroptera (microbats) and Yinpterochiroptera (fruits bats and kin), 684 

respectively. 685 

 686 

Figure 4. (A) Relative abundance of top 6 bacterial phyla grouped by anatomical 687 

site, with each bar corresponding to individual libraries. (B) Relative abundance 688 

of the most prevelant eight bacterial families across all anatomical sites, grouped 689 

by bat family. Phylogeny based on Teeling et al. (61). 690 
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 691 

Figure 5. (A) Distribution of skin microbial network clusters for parasitized and 692 

non-parasitized bats, grouped by bat family ( * indicates signifiance at p < 0.005, 693 

Kruskal-Wallis) (B) Visualization of skin bacterial networks (based on 694 

Fruchterman-Reingold algorithm); colored nodes correspond to unique clusters 695 

of co-occurring ESVs within each network. 696 

 697 

Figure 6. Log2fold change in relative abundance of skin-associated ESVs from the 698 

four most-sampled bat families. ESVs shown were found to be significantly 699 

associated with ectoparasite status in bats based on analysis of negative binomial 700 

distributions of relative abundance (Banjamini-Hochberg FDR corrected p-value 701 

p < 0.05). Positive values correspond to ESVs found to be enriched on parasitized 702 

bats, and negative values correspond to ESVs found to be enriched on non-703 

parasitized bats. Gray bars highlight ESVs in bacterial families that were enriched 704 

in parasitized bats for three out of four bat families. 705 

 706 
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FIGURE 3
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FIGURE 4
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Table 1. Bat sampling, ectoparasite prevalence (necto), and malarial parasite prevalence (nhaem) and 
identification.	
	
Bat family Bat species nbats necto (%) nhaem  (%) 
Emballonuridae Coleura afra 11 2 (18) 0 
Hipposideridae Hipposideros caffer 47 18 (38) 0 

 
Hipposideros camerunensis 2 0 0 

 
Hipposideros ruber 21 16 (76) 0 

 
Macronycteris vittatus 10 0 0 

Miniopteridae Miniopterus africanus 22 13 (59) 11 (50) 

 
Miniopterus natalensis  54 16 (30) 13 (24) 

 
Miniopterus rufus 22 20 (61) 20 (91) 

 
Miniopterus minor 18 16 (89) 12 (67) 

Molossidae Chaerephon bivittatus 14 0 0 

 
Otomops harrisoni 33 1 (3) 0 

Nycteridae Nycteris arge 3 0 0 

 
Nycteris thebaica 7 1 (14) 0 

 
Nycteris sp. 6 0 0 

Pteropodidae Epomophorus labiatus 2 0 0 

 
Epomophorus wahlbergi 11 0 3 (27) 

 
Micropteropus pusillus 4 0 0 

 
Myonycteris angolensis 4 0 0 

 
Rousettus aegyptiacus 48 24 (50) 0 

 
Stenonycteris lanosus 37 23 (62) 0 

Rhinolophidae Rhinolophus clivosus 43 8 (19) 0 

 
Rhinolophus eloquens 24 19 (79) 0 

 
Rhinolophus hildebrandti 4 1 (25) 0 

 
Rhinolophus landeri 14 0 3 (21) 

 
Rhinolophus sp. 3 0 

 Rhinonycteridae Triaenops afer 10 6 (60) 0 
Vespertilionidae Myotis tricolor 9 8 (89) 3 (33) 

 
Neoromicia nana 1 0 0 

 
Neoromicia sp. 3 0 

 
 

Pipistrellus sp. 1 0 0 

 
Scotoecus hindei 4 1 (25) 0 

 
Scotophilus dingani 3 0 0 

Total   495 193 65 
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Table	2.	Alpha	diversity	of	microbial	communities	across	anatomical	sites	within	each	host	genus,	
measured	by	Shannon	Index	of	diversity	(S-I)	and	observed	sOTU	richness	(obs);	n	corresponds	to	number	
of	libraries	included	in	each	calculation	(following	quality	filtering).	
	

	 	 	
Fecal	

	 	
Oral	

	 	
Skin	

	Host	Family	 Host	Genus	 S-I	 obs	 nfecal	 S-I	 obs	 noral	 S-I	 obs	 nskin	

Emballonuridae	 Chaerephon	 1.16	 52	 12	 1.39	 57	 14	 3.57	 547	 14	
Hipposideridae	 Hipposideros	 1.70	 79	 65	 2.01	 155	 52	 4.95	 439	 74	

	
Macronycteris	 1.82	 74	 9	 2.12	 110	 9	 4.94	 883	 7	

Miniopteridae	 Miniopterus	 1.41	 70	 92	 1.55	 87	 74	 4.12	 403	 114	
Molossidae	 Coleura	 1.59	 52	 11	 0.38	 41	 11	 4.01	 566	 11	

	
Otomops	 0.88	 53	 26	 0.35	 22	 26	 3.88	 288	 33	

Nycteridae	 Nycteris	 1.60	 80	 10	 1.62	 78	 14	 4.48	 807	 14	
Pteropodidae	 Epomophorus	 1.44	 49	 11	 1.42	 46	 11	 3.78	 566	 13	

	
Micropteropus	 1.90	 39	 3	 2.21	 39	 4	 2.30	 84	 3	

	 Myonycteris	 1.14	 117	 4	 1.29	 195	 5	 5.21	 1246	 4	

	
Rousettus	 1.62	 93	 32	 1.95	 84	 34	 4.90	 1207	 34	

	
Stenonycteris	 1.55	 61	 41	 1.72	 97	 38	 4.59	 855	 33	

Rhinolophidae	 Rhinolophus	 1.34	 62	 58	 1.95	 81	 59	 4.71	 543	 79	
Rhinonycteridae	 Triaenops	 1.69	 82	 9	 1.28	 414	 9	 4.03	 508	 10	
Vespertilionidae	 Myotis	 1.62	 54	 1	 1.33	 72	 6	 5.41	 771	 3	

	
Neoromicia	 2.13	 65	 4	 1.47	 37	 4	 3.76	 267	 4	

	
Pipistrellus	 1.05	 NA	 1	 NA	 NA	 0	 4.80	 360	 2	

	
Scotoecus	 1.86	 92	 4	 1.97	 17	 3	 4.20	 360	 4	

		 Scotophilus	 1.23	 64	 3	 0.38	 96	 1	 4.08	 459	 2	

Mean	
	

1.51	 69	
nfecal	
396	 1.47	 96	

norall	
375	 4.30	 587	

nskin	
458	
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Table	3.	Nonparametric	permutational	multivariate	analysis	of	variance	using	distance	matrices	(via	
ADONIS),	with	distance	matrices	among	sources	of	variation	partitioned	by	host	taxonomy	(species	nested	
within	genus),	ectoparasite	status,	malarial	infection	status,	and	locality	included	as	strata	to	constrain	
permutation	across	this	variable;	*	indicates	p-value	<	0.05.	
	
	

		 		 Weighted	UniFrac	 Unweighted	UniFrac	 Bray-Curtis	
Site	 Partition	Variable	 F	 R2	 Pr(>F)	 F	 R2	 Pr(>F)	 F	 R2	 Pr(>F)	

Fecal	 (Host	genus	(species))	 4.27	 0.162	 0.001*	 3.15	 0.120	 0.001*	 2.89	 0.110	 0.001*	

	
Ectoparasite	status		 0.47	 0.001	 0.912	 1.42	 0.004	 0.048*	 1.40	 0.004	 0.097	

	
Malarial	status		 1.34	 0.004	 0.21	 1.33	 0.004	 0.077	 1.98	 0.005	 0.011*	

	 	 	 	
		 		

	
		

	 	 	Oral	 (Host	genus	(species))	 6.82	 0.279	 0.001*	 3.50	 0.143	 0.001*	 6.69	 0.274	 0.001*	

	
Ectoparasite	status		 0.51	 0.001	 0.836	 1.41	 0.004	 0.057	 1.00	 0.003	 0.447	

	
Malarial	status		 2.78	 0.008	 0.015*	 1.17	 0.003	 0.2	 1.98	 0.006	 0.019*	

	 	 	 	
		 		

	
		

	 	 	Skin	 (Host	genus	(species))	 7.68	 0.329	 0.001*	 3.98	 0.170	 0.001*	 5.60	 0.240	 0.001*	

	
Ectoparasite	status		 2.42	 0.006	 0.01*	 1.54	 0.004	 0.02*	 2.07	 0.005	 0.001*	

		 Malarial	status		 0.92	 0.002	 0.513	 1.02	 0.002	 0.363	 1.06	 0.003	 0.32	
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Table	4.	Permutational	multivariate	analysis	of	variance	using	distance	matrices,	with	distance	matrices	
among	sources	of	variation	partitioned	by	host	taxonomy	(species	nested	within	genus),	locality,	and	
anatomical	site.	
	
	
		 Weighted	UniFrac	 Unweighted	UniFrac	 Bray-Curtis	
Partition	Variable	 SumSq	 F	 Pr(>F)	 SumSq	 F	 Pr(>F)	 SumSq	 F	 Pr(>F)	
		 		 		 		 		 		 		 		 		 		
Anatomical	site	 10.67	 198.01	 0.001*	 56.52	 82.90	 0.001*	 38.2	 36.97	 0.001*	
Host	Genus	 3.77	 13.09	 0.001*	 25.54	 7.02	 0.001*	 85.30	 15.06	 0.001*	
Locality	 1.56	 11.00	 0.001*	 20.62	 11.34	 0.001*	 23.85	 8.42	 0.001*	
Host	Genus:species	 1.39	 4.08	 0.001*	 11.20	 2.59	 0.001*	 25.25	 1.33	 0.001*	
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Table	5.	Supervised	machine	learning	results,	showing	random	forest	model	performance	with	respect	to	
different	classification	variables	and	input	data	sets	(fecal,	oral,	skin	microbiome).	Model	performance	is	
assessed	by	measuring	the	ratio	of	Out-of-bag	estimated	error	(OOB)	to	baseline	error.	
	

Classification	variable		 	Input	
Data	

Baseline	
error	

OOB	
error	 Baseline:OOB	

Anatomical	site		 	All	data	 0.68	 0.14	 4.8	
Host	Genus		 	Skin	 0.75	 0.17	 4.3	
Host	Genus		 	Oral	 0.78	 0.24	 3.2	
Host	Genus		 	Gut	 0.77	 0.35	 2.2	
Ectoparasite	Status		 	Skin	 0.53	 0.27	 2.0	
Malarial	Status	(Miniopteridae	only)	 	Oral	 0.46	 0.38	 1.2	
	

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/340109doi: bioRxiv preprint first posted online Jun. 7, 2018; 

http://dx.doi.org/10.1101/340109
http://creativecommons.org/licenses/by-nc-nd/4.0/

