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Abstract

This research introduced a new three-parameter Gumbel distribution by adding
a parameter to the traditional Gumbel distribution using the Marshall-Olkin
method. We derived the probability density function, cumulative distribution
function, and other statistical properties of the new distribution. The parame-
ters of the distribution are estimated using the Maximum Likelihood Estimation
(MLE) method. The new distribution improved flexibility and provided more effi-
cient estimators for a broader range of data types, including normal, skewed, and
extreme data. The properties of the estimators are thoroughly investigated, in-
cluding their asymptotic bias, consistency, and mean square error (MSE). Through
simulation studies and real data applications, the research demonstrates the supe-
riority of the new distribution over existing models, evidenced by smaller Akaike
Information Criterion (AIC) values and more efficient parameter estimates. The
research recommends the new distribution for future analyses, particularly for
large sample sizes, and suggests further research to refine the location parameter,
study some characteristics like quartile deviation, order statistics, and character-
istic function, and apply different parameter estimation methods to improve the
efficiency of a three-parameter Gumbel distribution.

viii



CHAPTER ONE

Introduction

1.1 Background Information

Extreme value analysis is a branch of statistics dealing with the extreme deviations

from the centre of probability distribution and it focuses on limiting distributions

which are distinct from normal distribution. Extreme value studies originated ma-

jorly from the experts in astronomy who focused on analyzing the data observed

from astronomical objects like comets, planets, moons, stars etc. The early pa-

pers on the extreme value theories focused both on methods of statistical analysis

and on the application of the formulated extreme value distributions (Afify et al.,

2018).

Over past years, extreme value theory has indicated that the world is gaining a

better understanding of the statistical modeling and analysis of the extreme value

concepts. The understanding of the behaviour of extreme event cases is useful

for understanding the whole behaviour of such cases both under the ordinary and

extra-ordinary circumstances. Therefore,it is a mistake to separate the extreme

events from the other events when it comes to modeling and analysis(Khalil &

Rezk, 2019).

Probabilistic extreme value analysis has many applications involving natural phe-

nomena such as wind characteristics, air pollution, flood, corrosion, rainfall etc,

that satisfies advance mathematical models and results on point estimation appli-

cations and regularly varying functions. This area of research initially attracted

the interests of probabilists, mathematicians, engineers and economists, and rel-
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ative recently of the statisticians (Khalil & Rezk, 2019). Extreme value analysis

primarily deals with the stochastic behaviour of the minimum and the maximum

independent and identically distributed random variables, meaning each random

variable has the same probability distribution as the others and all are mutually

independent. The distributional properties of extremes (minima and maxima),

thresholds and order statistics are determined by lower and upper tails of the ap-

plied distribution. The tails of the distribution parameters may be investigated by

means of statistical procedures based on extreme and intermediate order statistics.

A frequently occurring problem in statistics is the model identification in statis-

tical data analysis. In standard applications like categorical data analysis and

regression analysis, model selection becomes easy since it may be related to the

number of independent variables to have in the selected model. In the applica-

tion of statistical analysis of extreme value data, convergence to some standard

extreme value distributions like Gumbel, Frechet and Weibull is important and a

decision has to be made occasionally between special cases of distributions and

the more general versions of the distributions (Persson & Rydén, 2010)

For a number of years, the extreme values problems and analysis were known to

be related to the research studies of Gumbel (1958), whose life and studies were

affected by pre-World war II disruptions. According to (Gumbel, 1958), the the-

oretical development of the 1940s were dealing with: the practical application of

the extreme value statistics in distribution of engineering materials, human life-

times, strength of materials, radioactive emissions, rainfall analysis, flood analysis,

earthquake, market analysis, hydrology to mention a few examples.

Gumbel was the first researcher to alert the statisticians and the engineers to

possible applications of the formal extreme value study distributions which had

in decades been treated empirically. The potential applicability of the Gumbel

distribution to represent the cases of minima and maxima relates to the extreme

value theory which implies that it is most likely to be applicable if the distribu-

tion of the underlying sample data is of the normal or exponential type (Persson
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& Rydén, 2010).

Today, extreme point distributions have developed as one of the key statistical

area for applied sciences. Analyzing extreme values therefore, requires parameter

estimation and application of the probability of events that are more extreme than

the previously experienced cases with the main goal of estimating the future expec-

tations (Teamah et al., 2020). Extreme value analysis provide a framework that

assists for this type of research work that deals with extreme data sets. Gumbel

distribution is not only widely used in various application in extreme value studies

but also referred as the mother to the extreme value distributions (that is, Frechet

and Weibull distribution types)(Persson & Rydén, 2010; Teamah et al., 2020).

Not many research have been published on the extensive study of the Gumbel dis-

tribution even with its ability to fit data from many different areas of the extreme

value observation like engineering, physics, climate among others.

This study therefore developed a new distribution called three parameters Gum-

bel distribution to improve the flexibility of the already existing two parameter

distribution. The new distribution was developed by applying the Marshall-Olkin

method for adding a new parameter to an existing distribution. To estimate the

parameters of the three parameters Gumbel distribution which we discuss in chap-

ter three, this study intends to apply Maximum Likelihood Estimation method.

This method of estimation was preferred over the other methods like Method

of moments, Ordinary Least square, percentiles, Cramer-Von Mises etc because

(Afify et al., 2018; Al-Subha & Alodatb, 2017; Hussein et al., 2021; Zhou et al.,

2018) provide enough evidence supporting Maximum Likelihood Estimation as

the best parameter estimation method since it provides better estimates for both

small and large samples of data.

This research concentrates on three parameters namely; the location parameter,

dispersion parameter and the shape parameter. The location parameter help in

determining the shift of the distribution under study and as well tells us where

the distribution is located/centered, the scale/dispersion parameter helps in de-
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scribing how the distribution is scattered around the center or simply how the

distribution is spread and the shape parameter guide us on the shape of the dis-

tribution depending on the value of the shape parameter, that is it changes the

slope of the distribution.

1.2 Basic concepts

This section discuss the univariate and generalized distributions, mixture of Gum-

bel with other distributions(that is, gamma, beta, geometric, lomax, exponential

etc), all of which are Gumbel family and have been used to model and analyze

extreme values. The three primary parameters in discussion is, the location param-

eter which shifts the distribution along the horizontal axis. The scale parameter

that stretches or compresses the distribution, and the shape parameter for deter-

mining the tail behavior of the distribution.

1.2.1 Univariate and Generalized distributions

Extreme value distributions are always considered to fall under three families

namely; type one, two and three, whereby type one was introduced by Gumbel

hence giving us the Gumbel distribution modeled as follows.

1. Type 1, (Gumbel distribution)

Pr[V≤v] = exp

[
− exp

(
− v−γ

ϑ

)]
, (1.1)

where V is the random variable with i = 1, 2, ..., k observations, γ > 0 is the

location parameter and ϑ > 0 is the dispersion or scale parameter.

2. Type 2, (Frechet distribution)

Type 2 distribution is called the Frechet distribution and its probability
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density function is given as follows.

Pr[V≤v] =


0, v < γ

exp

{
−
(
v−γ
ϕ

)−ρ}
v ≥ γ,

(1.2)

where (ρ, γ, ϕ) > 0 are the three parameters namely shape, location and

scale respectively.

3. Type 3, (Weibull distribution)

Type 3 distribution is called the Weibull distribution. It is a distribution

with three parameters and it is described as follows.

Pr[V≤v] =


exp

{
−
(
v−γ
ϕ

)−ρ}
v ≤ γ

0, v > γ

(1.3)

where γ > 0 is the location parameter, ρ > 0 is the shape parameter and

ϕ > 0 is the scale/dispersion parameters and −∞ < v < ∞ is the random

variable.

Of these three families of extreme value distribution, Gumbel type (type

1) is the most commonly used in the extreme value theory analysis. In-

deed, majority of the scholars call Gumbel distribution the extreme value

distribution. In view of this and again the fact that distribution of type

2 (Frechet distribution) and type 3 (Weibull distribution) can be trans-

formed to Gumbel distribution by applying a simple transformation, that

is M = log(V − γ),M = −log(γ − V ), respectively (Kotz & Nadarajah,

2000).

Univariate distributions include Gumbel, Frechet, and Weibull distributions,

each characterized by specific parameters. Generalized distributions, such
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as the Generalized Extreme Value (GEV) distribution, combine these fami-

lies and provide a more flexible framework for modeling extreme values.The

foregoing means that generalized distributions have been modeled out of the

three distributions of type 1, 2 and 3 as follows:

4. Generalized Extreme Value distribution (GEV) also known as Von Mises

type extreme value distribution or Von Mises-Jenkinson type distribution.

The generalized extreme value distributions was first developed by Jons-

son(2014). This distribution was to be applied on various studies like sea

levels, rainfall, air pollutants, river lengths and annual maxima among oth-

ers. The cumulative distribution function of the GEV distribution is ob-

tained as;

F (v) =


exp−(1+β( v−λ

θ
))

−1
β −∞<v ≤ λ− θ

β
for(β < 0)

λ− θ
β
≤v <∞ for(β>0)

exp−exp
− v−λ

θ −∞ < v <∞ for(β = 0)

(1.4)

where the Generalized Extreme Value distribution include the Gumbel dis-

tribution when β = 0, Frechet distribution when β > 0 and Weibull dis-

tribution when β < 0 (Kotz & Nadarajah, 2000). And λ, β and θ are the

location, shape and scale parameters respectively.

5. The Generalized Extreme Value (GEV) distribution

This is also another combination of the three families of the extreme value

distributions (Gumbel, Frechet and Weibull) distribution which was devel-

oped by Rychlik and Rydén(2006) and modeled as follows

F (v) =

{
exp
(
−
(
1− ϑ(v−γ)

ϕ

) 1
ϑ
)
, ϑ̸=0

exp
(
− exp

(
− (v−γ)

ϕ

))
, ϑ = 0

, (1.5)

where γ, ϕ, ϑ are the location, dispersion and shape parameters respectively.
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1.2.2 Mixture of Gumbel and other distributions

In this subsection, we present a mixture of Gumbel distribution with exponential,

gamma, geometric, beta, Lomax and left truncated distributions known respec-

tively as Exponentiated Gumbel, Gamma Gumbel, Gumbel geometric, beta Gum-

bel, Lomax Gumbel, Left truncated Gumbel and Odd exponentiated half logistic

Gumbel represented as follows.

1. A generalization of the Gumbel distribution, referred to the exponential

Gumbel distribution (EG) was introduced by (Nadarajah, 2006)

fEG(v) =
ϕ

ψ
exp
(
−v − ρ

ψ

)
exp
[
−exp

(
−v − ρ

ψ

)][
1−exp

{
−exp

(
−v − ρ

ψ

)}]ϕ−1

,

(1.6)

where, ρ is the location parameter, ϕ > 0 is the shape parameter and ψ > 0

is the dispersion parameter.

2. The Gamma Gumbel distribution

This type of distribution was introduced by Gholami et al. (2020). The

probability density function of the Gamma Gumbel (GG) distribution is

given by;

f(v) =
1

θΓ(ψ)
exp

{
− ψ(v − ρ)

θ
− exp

(
− v − ρ

θ

)}
, v∈ℜ, (θ, ψ) > 0, ρ∈ℜ

(1.7)

where ρ is the location parameter, θ is the scale parameter and ψ gives the

shape of the distribution. The Gumbel distribution is obtained from the

Gamma Gumbel distribution as a submodel by setting ψ = 1.

3. The Gumbel Geometric distribution

This distribution was introduced by Oseni and Okasha (2020). They stated

that a random variable V, with the interval (−∞,∞) is referred to a Gumbel

geometric with parameters (ϕ, β, γ) with the probability density function
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given by;

f(v) =
(1− γ)

β
exp

(
− v − ϕ

β
− exp

(
− v − ϕ

β

))
×(

1− γ + γexp

(
− exp

(
− v − ϕ

β

)))−2

, (1.8)

where ϕ∈(−∞,∞), β∈(0,∞) and γ∈[0, 1) are the three parameters of the

distribution representing the location parameter, scale parameter and the

shape parameter respectively.

4. The Beta Gumbel distribution

According to Jonsson (2014), the probability density function of the Beta

Gumbel distribution with four parameters, that is scale and location param-

eters, (z, w, ϕ, θ), is given by:

f(v) =
1

ϕB(z, w)
ρexpzρ[1− exp−ρ]w−1,−∞ < v <∞, (1.9)

where ρ = exp[−v−γ
ϕ
], B(z, w) is the beta function and

−∞ < γ <∞, (ϕ, z, w) > 0

5. The Lomax Gumbel distribution

The Lomax Gumbel distribution was developed by Jaya et al. (2016). The

study defined the cumulative density function of the Lomax-Gumbel distri-

bution with four parameters as

FLG(v;ϑ, γ, ψ, δ) = P

[
1−

{
1 +

1

γ
exp
{
− exp

(
− v − ψ

δ

)}}−ϑ]
(1.10)

where P−1 = 1− (1 + γ−1)−ϑ, (ϑ, γ, δ) > 0,−∞ < ψ <∞,−∞ < v <∞.

And ψ is the location parameter, (γ, δ) are scale parameters and ϑ is the

shape parameter
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6. Left truncated Gumbel distribution

Suppose V is a random variable defined within the range (−∞,∞), in order

to have the probability density function of the random variable V defined on

the interval [Z,∞], where z is the lower bound, then the probability density

function of the random variable V is truncated from the left. Therefore, the

left truncated Gumbel distribution for interval (0,∞) is given as (Neamah

& Qasim, 2021)

f(v) = [1− exp−exp
p
w ]−11

p
exp−exp

−(v−p)
w − (v−p)

w ; v ≥ 0, (1.11)

where p is the location parameter and w is the scale parameter.

7. The odd exponentiated half-logistic.

This is a distribution of Gumbel family with three parameters namely; γ is

the shape parameter, δ is the scale parameter and ϕ is the location parameter

(Afify et al., 2018).

F (v; γ, δ, ϕ) =

{1− exp

[
−δG(v;ϕ)
G(v;ϕ)

]
1 + exp

[
−δG(v;ϕ)
G(v;ϕ)

]}γ

, (γ, δ, ϕ > 0), (1.12)

1.3 Problem statement

Extreme value analysis is developing more interest in applied sciences and there-

fore, there is need to develop more flexible distribution for analyzing/modeling the

extreme data. Extreme value distributions are always viewed to include families

of Gumbel, Frechet and Weibull distributions. Of the three distributions, Gum-

bel distribution is frequently used in the extreme value theory analysis because

majority of the authors refer to Gumbel distribution as the mother to the ex-

treme value distributions from the fact that the Frechet and Weibull distributions

can be transformed to Gumbel distribution by applying a simple transformation.
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Gumbel distribution with two parameters namely location and dispersion can be

made more flexible to improve its reliability for modeling extreme data. Existing

literature has shown that the addition of parameter to a distribution makes it ro-

bust and/or more flexible hence the study intends to improve the existing Gumbel

distribution by making it more flexible through addition of shape parameter using

Marshall and Olkin technique.

1.4 Objectives

The main objective of the study is to develop a three parameters Gumbel distri-

bution using Marshall Olkins technique.

The specific objectives are as follows:

1. To derive a three parameter Gumbel distribution using Marshal-Olkins method

2. To estimate the parameter of a three parameters Gumbel distribution using

Maximum Likelihood Estimation method

3. To evaluate the properties of the estimates of the three parameters Gumbel

distribution using simulated data.

4. To apply a three parameter Gumbel distribution to simulated and real data

sets.

1.5 Significance of the study

The development of a three parameters Gumbel distribution will significantly en-

hance the ability to model and predict extreme data, skewed data and normal

data. This has profound implications to some lifetime studies like high tempera-

ture, wind characteristics, earthquakes, network designs, horse racing, queues in

supermarket, insurance premium distributions, risk management, ozone concen-

tration, flood, engineering and more recently financial concepts by improving the

10



accuracy and reliability of the results through the provision of unbiased, sufficient,

efficient and consistent estimators.
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CHAPTER TWO

Literature Review

2.1 Introduction

This chapter gives the review of extreme value distributions and their extensions.

It also explains the methods used to approximate the distribution’s parameters,

the findings and critics. The review of the literature is essential in that it helps in

having a clear picture of the research gap.

2.2 Extreme value distributions

In the extreme value analysis, it was found that the maximum of many common

distributions like lognormal and normal distributions converge to Gumbel distri-

bution (Coles & Pericchi, 2003). In the literature of probability risk analysis, there

has been debate over the decision to use Gumbel distribution contrast to Gener-

alized Extreme Value distribution. Also, in the analysis of rainfall measurements

by optic, the same discussions were made. Similar conclusions are given by the

authors that Gumbel distribution provides narrower confidence interval than the

Generalized Extreme Value distribution but has also the risk of under-estimating

the parameters. Hence, the selection of the distribution is not significant (Coles

et al., 2001). This shown that there is still a gap in the distribution modeling to

come up with the more robust distribution which can be fulfilled by re-modeling

the Gumbel distribution.

According to Neamah and Qasim (2021), left truncated Gumbel distribution is

a suitable distribution for random variables within the interval (0,∞). In terms
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of the parameter estimation, the study found out that the best method to ap-

proximate the parameters of left truncated Gumbel distribution is the Maximum

Likelihood Estimation method because this method provided the lowest standard

mean squared error at all levels of the sample and for all cases of the default val-

ues for the parameters. This study support MLE as the greatest approximation

method for approximating the parameters. This study did not look into modeling

the original Gumbel distribution, it only truncated the observations of the ran-

dom.

The study by Oseni and Okasha (2020), developed Gumbel geometric distribu-

tion and investigated its characteristics such as quantile function, moments and

characteristics functions. The distribution was found to be quite flexible and the

asymptotic properties of the distribution indicated that Mean Square Error de-

creases to Zero as K→∞, where K is the number of observations, and the bias

either decreases or increases depending on the sign for each of the parameter. This

study created a three parameters distribution from combination of two statistical

distributions but not by adding a parameter to the type 1 (that is, Gumbel dis-

tribution).

The study by Jaya et al. (2016), introduced a new statistical distribution called

Lomax Gumbel distribution by combining Gumbel and Lomax distributions. This

was achieved by developing a new technique for constructing a family of statistical

distributions by combining the cumulative density functions (cdf) of two known

distributions. The study approximated the parameters by the method of Max-

imum Likelihood Estimation. This study further confirmed that the combined

distribution is more robust than either the Loman distribution or the Gumbel

distribution when applied individually. This study introduced the Lomax Gumbel

distribution by combining the two distributions but not by adding a parameter to

the univariate Gumbel distribution.

In a statistical analysis Gumbel distribution, Exponential Gumbel distribution

and Generalized Extreme Value distribution (three parameter Generalized Ex-
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treme Value distribution) were applied on two types of data sets. The results

showed that Exponential Gumbel distribution could serve as an alternative to

Generalized Extreme Value distribution because it gives narrower confidence in-

tervals than the Generalized Extreme Value distribution. It was also noted that the

Exponential Gumbel distribution produced the smallest Anderson-Darling statis-

tical value compared to the Gumbel and Generalized Extreme Value distribution.

This research recommended further studies on estimation methodology and anal-

ysis using Exponential Gumbel distribution (Persson & Rydén, 2010). This study

also combined exponential and Gumbel distribution, it did not add a parameter

to the univariate Gumbel distribution using Marshall Olkin proposed method.

According to Jonsson (2014), who introduced Beta Gumbel distribution which had

two additional parameters to permit for the study of variability of the tail weights

and skewness and from which the simulated data provided the evidence that the

Beta Gumbel distribution was more flexible than the Gumbel distribution. Pro-

viding the Maximum Likelihood Estimation for the introduced distribution was

unsuccessful due to computational problems. This research further pointed out

that Beta Gumbel distribution cannot be concluded as a better distribution to use

and therefore, the study recommended for further research to be done to study

the distribution and its applicability to numerous areas. From this study, there is

evidence to prove that the work on the flexibility of the extreme distributions is

still not complete since studies are concentrating on combination of distributions

and not on the application of Marshal Olkin method of introducing a new param-

eter to a distribution.

The newly introduced odd exponential half-logistic Gumbel family distribution

with two extra parameters had its model parameters approximated by the method

of Maximum Likelihood Estimation making use of simulated data. The application

of this model proved that it provided consistently better fits than other compar-

ative models which were introduced using the Gumbel family (Afify et al., 2018).

The introduced model was a result of combination of model and not additional of
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parameter to the Gumbel distribution

According to Al-Subha and Alodatb (2017), deciding a right distribution for ana-

lyzing a given data, is a very primary subject and when setting out a data set, it

becomes a problem to select a correct distribution between Lognormal and Gum-

bel distributions with two parameters. The study used Monte Carlo simulations to

simulate data. The finding was that on the basis of the Monte Carlo simulations

the Probability of Correct Selection (PCS) for MLE estimation technique for the

Gumbel distribution slightly outperforms the MLE and MOME for the logistic

regression. This research supports Maximum Likelihood as the best method for

parameter estimation both for lognormal and Gumbel distributions. This study

did not model the Gumbel distribution, it compared the Gumbel and Lognormal

distribution.

A study by Qaffou and Zoglat (2017), compared normal and Gumbel distribution

after arguing that they are much alike in practical application in flood and en-

gineering analysis. The researchers used the ratio of the Restricted Maximized

Likelihood (RML) estimation as the test statistics under both normal and Gum-

bel (two parameter)distributions. Using Monte Carlo simulation, the probability

of correct selection was compared with the asymptotic distribution results of the

test statistics under the null hypothesis and it was found that ML can be used for

differentiating between any two distributions of the scale and location parameter.

This study showed Maximum Likelihood is the best estimation method for dis-

criminating two or more distributions of the same family. This study compared

the normal and Gumbel distribution, it did not add a parameter to the Gumbel

distribution.

In the study of a new three parameter distribution called Burr X Frechet dis-

tribution which has the advantage of modeling aging and failure criteria. The

Maximum Likelihood Estimation method was used to approximate the model pa-

rameters which were applied to assess the simulated data. The study proved the

flexibility and the importance of the new Burr X Frechet distribution by compar-
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ing it with other extensions of Frechet distribution. This study showed that it

is indeed significant to modify a distribution to make it flexible and suitable for

modeling real life events (Abouelmagd et al., 2018).

According to Khalil and Rezk (2019), a new extension of Frechet distribituion

called Poison Burr X Frechet was introduced based on Zero Touch Provision-

ing (ZTP) model. The PDF of the poison Frechet model showed that it can be

unimodal, left skewed or right skewed and therefore, more flexible than Fretch

distribution. The method of Maximum Likelihood Estimation was used to ap-

proximate the parameters. This study combined distributions instead of adding a

parameter to the univariate frechet distribution.

According to Hussein et al. (2021), a new flexible extension of the Frechet distri-

butions referred to extended Weibull-Frechet distribution in which they believed

provided more flexibility to model and analyze real life data than the other set

of extreme value distributions like univarite Frechet and Weibull distributions.

The researchers estimated the extended distribution parameters using Maximum

Likelihood Estimators (MLEs), Maximum product Spacing Estimators (MPSEs),

Anderson-Darling Estimators (ADEs), Least Square Estimators (LSEs), the Per-

centiles Estimators (PCEs), the Cramr-von Mises Estimators (CRVMESs). The

estimation results showed that MLE and MPSE outperforms the other estimation

methods. Also, the flexibility and importance of the extended four parameter

Weibull-Frechet distribution was examined using real data sets from engineering

and medicine field and the results showed that the Extended Weibull-Frechet dis-

tribution indicated an adequate fit compared to Frechet distribution extensions

like beta-Frechet distribution, Exponential Frechet distribution, gamma extended

Frechet distribution, transmuted exponential Frechet distribution and Frechet dis-

tribution. The study used goodness of fit measures like AIC (Akaike Information

Criterion), CAIC (Consistent Akaike Information Criterion), BIC (Bayesian In-

formation Criterion), Cramer-Von Mises, Anderson-Darling and KS (Kolmogorov-

Smirnov). From this study, there is evidence that introducing a parameter to an
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surviving distribution can make the extension more flexible and important for ap-

plication. This study combined Fretch and Weibull distribution but it did apply

the Marshall Olkin method of putting on a parameter to an existing distribution.

According to Ramos et al. (2017), the proposed long term Frechet distribution

gave out results towards the maximum likelihood parameter estimators and their

asymptotic characteristics. The efficiency of the estimators was evidenced from

the simulated data which generated acceptable outcomes even for small sample

sizes. The study proposed application of other distribution extensions as well as

other estimation methods like Bayesian estimation approach to improve the ro-

bustness of the distributions

A study by Teamah et al. (2020), established a new distribution called Frechet-

Weibull distribution (FWD) which extended to Weibull distribution. Properties

of the distribution was examined using moments, moments generating function,

quantile function, mode and mean residual life function. Akaike Information Cri-

terion and Bayesian Information Criterion were also applied to study the goodness

of fit. The simulated data indicated that all the applied estimators perform well

in terms of their bias. Real data application was used to investigate the poten-

tiality and flexibility of the new distribution and the results proved that the new

distribution (FWD) gave greater fits than other adjuncts of Frechet and Weibull

distributions. This study implies that adding more parameters to a distribution

makes it more flexible and important for application though it did not either add

a parameter directly to a distribution or applied the Marshal Olkin method.

According to Mansour et al. (2018), who developed a three parameter Frechet

distribution called Odd Lindney Frechet distribution (OLiFr) which extends the

Frechet distribution, model estimates were obtained by Maximum Likelihood es-

timation methods. When they applied a two real data sets, they proved that

three parameters Frechet distribution provide better fits than the Frechet distri-

bution and other well known extensions of Frechet distribution (Kumaraswany

Frechet, Exponentiated Frechet, gamma extended Frechet, beta Frechet, trans-
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muted Frechet and transmuted Marshall-Olkin Frechet). This in general implies

that a three parameter distribution more flexible to be used in any data. This

study did not apply the Marshal Olkin proposed method for introducing a param-

eter to a distribution

A study by Willayat et al. (2022) used the marshall olkins method to add a

parameter to the generalized form of the standard Gumbel type II distribution

(also called Exponentiated Gumbel type II) and developed a distribution called

Marshal-Olkins Extended Gumbel type II distribution with one scale parameter

and three shape parameters. This study used maximum likelihood estimation

method and concluded that it gave better estimates with increase in sample size.

The study further studied properties like characteristic function, order statistics,

Quartile function and Moment generating function among others. This research

did not concentrate at introducing a new parameter to the original Gumbel dis-

tribution with two parameters namely scale and location.

Three methods of parameters estimation namely maximum likelihood estimation,

method of moments and least square estimation and concluded that maximum

likelihood estimation method provides greater estimates compared to method of

moments and least square estimation (Salma & Abdelali, 2018).

A study by Johnson et al. (2011) compared methods of moments and maximum

likelihood estimation techniques on gamma distribution and reached a conclusion

that maximum likelihood estimation is better for parameter estimation since it

gives superior estimates for continuous distributions.

According to Saleh et al. (2012) research on investigating different techniques for

parameter estimation like power density method, maximum likelihood method,

graphical estimation method and modified maximum likelihood method, the study

concluded that maximum likelihood estimation method provides good estimators.
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2.3 Research gap

From section 2,2, we have found that adding a parameter to some existing distri-

bution makes them more flexible and important for modeling and analyzing both

simulated and real life data sets. This is because the newly introduced parame-

ters in a distribution provides better estimates and makes it more robust and/or

efficient than the baseline distributions. However, from the reviewed literature,

we realized that apart from combining Gumbel distribution with other distribu-

tions like exponential, gamma, geometric among others, no scholar have modeled

a three parameters Gumbel distribution. For this study we wish to model a three

parameters Gumbel distribution (3-PG) about which we consider three parameters

(that is, shape, location and dispersion) using Marshall-Olkin (19997) proposed

method.
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CHAPTER THREE

Methodology

This chapter discusses how the three parameters Gumbel distribution was de-

veloped from the two parameters distribution, further it demonstrates how the

parameters of the distribution are estimated. The chapter shows particular prop-

erties of the distribution to be investigated using simulated data. It also discuses

how its efficiency compares with Gumbel distribution family. In developing the

three parameter Gumbel distribution we rely on Marshall-Olkin technique of in-

troducing a parameter to an existing distribution. Marshall-Olkin’s technique is

discussed in section 3.1.

3.1 Marshall Olkin method of adding a parameter

Marshall and Olkin (1997) proposed a procedure of introducing a new parameter

to an existing distribution. This is because introducing a parameter to a well

defined distribution is an honored procedure in that it helps in introducing a more

flexible new family of the distribution for modeling various data types (Hassan

et al., 2022). A new parameter for the main objective of this study is to be

added to the following baseline probability distribution which is a two parameter

distribution with ω representing location of the variables and τ representing scale

or dispersion parameter.

f(v) =
1

τ
exp
(
− v − ω

τ
− e−

v−ω
τ

)
(3.1)
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where v ∈ ℜ and ω > 0, τ > 0 are location and dispersion/scale parameters

respectively.

Marshall Olkin (1997) began with a parent survival function F̄ (v) and considered

a family of survival function given by:

S̄(v) =
δF̄ (v)

1− δ̄F̄ (v)
=

δF̄ (v)

F (v) + δF̄ (v)
,−∞ < v <∞ (3.2)

where δ > 0, δ̄ = 1− δ and F̄ (v) = 1− F (v). For δ = 1, S̄(v) = F̄ (v).

The two primary properties of the Marshall-Olkin family of distributions is that

it has a stability property, that is if the method is put in application twice it

returns back to the original distribution and the introduced distribution satisfies

the property of the geometric extreme stability (Hassan et al., 2022).

After introducing the new distribution, the corresponding cumulative distribution

function (cdf) and probability density function (pdf) are respectively obtained as

given in the following equations:

T (v) =
F (v)

1− δ̄F̄ (v)
(3.3)

and

t(v) =
δf(v)(

1− δ̄F̄ (v)

)2 (3.4)

3.2 Maximum Likelihood Estimation method (MLE)

In this section discuss the method of Maximum Likelihood Estimation which we

use in this study for the purpose of estimating parameters of the new three pa-

rameters Gumbel distribution to be modeled.

According to (Zhou et al., 2018), maximum likelihood method can be used in many

problems since it has a strong instinctual appeal and it yield a better estimator(s).

This method of maximum likelihood is widely put in application because it is more

precise especially when dealing with large samples since it yields a more efficient
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estimator(s) when the sample is large. This is an evidence from the literature

review where we realized that Maximum Likelihood Estimation method gives the

best parameter estimates compared to the other estimation methods like Mini-

mum Distance Estimation, Method of Moments etc.

According to (Hurlin, 2013), if supposing we have say Ẑ of P is a solution to the

maximization problem given as

Ẑ = argMaxln(Z : v1, v2, ..., vk), (3.5)

where, v1, ..., vk represents the data observations, then under suitable regularity

conditions, where the first order condition is given as

∂ln

∂Z
(Z : v1, v2, ..., vk) = −k + 1

Ẑ
(
k∑
i=1

Vi) (3.6)

These conditions are generally called the likelihood or log-likelihood equations.

The first derivative or gradient of a condition (log-likelihood) which is solved at

point Ẑ need to satisfies the following equation

∂ln(Z : v1, v2, ..., vk)

∂Z
=
∂ln(Ẑ : v1, v2, ..., vk)

∂Z
= 0 (3.7)

The log-likelihood equation that coincide to linear or non-linear system of P equa-

tions with P unknown parameters Z1, Z2, ..., ZP with K observations is given by

∂ln(Z : v1, ..., vk)

∂Z
=

(
∂ln(Z : v1, ..., vk)

∂Z1

)
= ..... =(

∂ln(Z : v1, ..., vk)

∂ZP

)
= 0 (3.8)

Maximum Likelihood Estimation is a recommended technique for many distribu-

tions because it uses the values of the distribution parameters that makes the

data more likely than any other parameters. This is achieved by maximizing the

likelihood function of the parameters given the data. Some good features of maxi-
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mum likelihood estimators is that they are asymptotically unbiased since the bias

tends to zero as the sample size increases and also they are asymptotically efficient

since they achieve the Cramer-Rao lower bound (CRLB) which states that for any

unbiased estimator of population parameter P it gives a lower estimate for the

variance of an unbiased estimator, as sample size approaches ∞ and lastly they

are asymptotically normal (Gupta & Biswas, 2010; Hurlin, 2013).

3.3 Properties of the Estimators

This section considered the asymptotic properties of the estimators which are sup-

pose to be tested on the parameters we estimate from the new distribution. We

considered the bias of the individual estimators. Similarly, we expect to test the

Mean Square Error (MSE) of the estimators. Further, we tested the estimators

for the possibility of consistency and asymptotic normality. We used the Central

Limit Theorem (CLT) to test if the distribution of the variable, V asymptotically

converge to the standard normal.

Consider ϑ̂ as a random variable. In general, the probability density function (pdf)

of ϑ̂, f(ϑ̂), depends on the pdf’s of the random variables {V }ki=1. For the purpose

of analysis, we investigate some properties like mean (expected value), variance

and standard deviation (spread about the expected value). The expected value

of an estimator is related to the concept of the estimator bias and the variance

and/or standard deviation is related to the estimator correctness (Zhou et al.,

2018).

The word ”Asymptotic” means in an infinitely large sample (that is, as the sample

size K tends to infinity the sample mean and variance tends to be normally dis-

tributed) and this means that, asymptotic results are only approximated in real

world situations since getting very large sample is a challenge. The estimators

bias and precision are finite sample features, meaning they are properties that

hold only for a finite sample size K. Some times, we are focused in studying the

properties of estimators when the sample size K gets very large. The very large
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sample leads to the property of consistency, asymptotic normality and Central

Limit Theorem (CLM), which we discuss below (Gupta & Biswas, 2010; Zhou

et al., 2018).

1. Bias

Unbiasedness is a desirable property of any estimator of any given distri-

bution under study, meaning that the estimators gives the correct answer

”on average”, where ”on average” means over many hypothetical observa-

tions of the random variable {Vi}ki=1. The symbol ϑ is used to represent a

generic parameter of the population (for example ρ, ϕ2, p), and the symbol

ϑ̂ is used to represent the statistical estimator for ϑ. If the expected value

of the estimator is equal to the parameter, that is , if:

E(ϑ̂) = ϑ,

the estimator is said to be unbiased. Otherwise, the estimator is said to

be biased, that is B = |E
(
ϑ̂

)
− ϑ|. The bias B is the absolute difference

between the expected and the actual value of the parameter.

2. Mean Square Error

A precise estimate is one in which the variability in the estimation error is

small. This estimator is defined as the expected value of the square of the

difference between the expected value and the parameter. That is;

MSE(ϑ̂) = E[(ϑ̂− ϑ)2]

If E(ϑ̂) = ϑ then the MSE(ϑ̂) reduces to the V (ϑ̂). This is because,

MSE(ϑ̂) = E[(ϑ̂− ϑ)2] = V (ϑ̂) + [E(ϑ̂)− ϑ]2 = V (ϑ̂) +B2 (3.9)
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Under minimum variance estimator, an estimator is said to be sufficient if

the conditional distribution of the random samples given ϑ̂ does not depend

on the parameter ϑ for any Vi. And said to be more efficient than another

estimator if it is more reliable and precise for the same sample size k.

3. Consistency

Let ϑ̂ be an estimator of ϑ based on random variable {Vi}ki=1. An estimator

is said to be consistent if the precision and reliability of its estimate improve

with increase in sample size. That is, the bias approaches zero as the sample

size approaches infinity. Precisely,

limK→∞Pr

(∣∣∣∣ϑ̂− ϑ

∣∣∣∣ ≥ ϵ

)
= 0, ϵ > 0 (3.10)

Laws of large number are also used to induce if an estimator is consistent or

not, that is, an estimator ϑ̂ is consistent for ϑ, for K observations if:

i bias(ϑ̂, ϑ) = 0 as K → ∞

ii MSE(ϑ̂, ϑ) = 0 as K → ∞

iii se(ϑ̂) = 0 as K → ∞

4. Asymptotic normality

Let ϑ̂ be an estimator of ϑ based on random variable {Vi}ki=1. Then an

estimator is said to be asymptotically normally if:

ϑ̂ ∼ N(ϑ, se(ϑ̂)2)

for large enough K, meaning that f(ϑ̂) is known to be well approximated

by normal distribution with mean ϑ and variance se(ϑ̂)2

5. Central Limit Theorem
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The Central Limit Theorem (CLT) states that the sample averages of collec-

tion of independently and identically distributed random variables V1, V2, ..., VK

with E(Vi) = ρ and var(Vi) = ψ2 is said to asymptotically normal with mean

β and variance ψ2

K
, and the cumulative density function of the standardized

sample mean given as:

V̄ − ρ

se(V̄ )
=
V̄ − ρ

ϕ√
K

=
√
K
( V̄ − ρ

ϕ

)
,

which converges to the cumulative density function of a standard normal

random variable Z as K→∞, that is:

√
K
( V̄ − ρ

ϕ

)
∼ Z ∼ N(0, 1),

the CLT will helps us to understand the behaviour of the random variable V

as the sample size approaches infinity, since it is expected that as the sample

size shifts very large, the variance and the mean of the variable should tend

to be normally distributed.

3.4 Test of goodness of fit

It is key to verify the suitability and the exactitude of the developed distribution

by performing the test of goodness of fit which simply tell us how good is the

distribution in comparison to the other families of the existing distributions like

Gumbel distribution with two parameters, exponentiated Gumbel distribution,

Gumbel geometric distribution, Weibull two parameters distribution and three

parameters Frechet distribution. The test of goodness of fit statistic was examined

using Akaike Information Criterion (AIC) for investigating the level of efficiency

between the distributions under study. Both simulated and real life data was

applied to help in understanding and reporting the results for the distribution

efficiency. The test is discussed in sections (3.4.1).
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3.4.1 Akaike’s Information Criterion (AIC)

The Akaike Information Criterion is computed as;

AIC = −2logP (W ) + 2z, (3.11)

where; logP (W ) expound the value of the maximized log-likelihood objective func-

tion for a model with z parameters to k data points. A smaller AIC value consti-

tute a superior fit, that is, greatest model for fitting the data (Persson & Rydén,

2010). The AIC technique was fitted on the modeled three parameters distribution

and the other comparison distributions of the Gumbel family.

3.5 Distributions for comparison with their parameter estimates

For us to compare the estimates obtained from Maximum Likelihood Estimation

method and to test efficiency between the new three parameter Gumbel distribu-

tion and the already existing distributions, we used the Mean Square Error (MSE)

to compare the distributions. The decision was based on the values of bias and/or

variance, whereby, the smaller Mean Square Error indicates the smaller error and

a better estimator and hence a robust distribution. The following distributions

and their parameter estimates were used for efficiency analysis .

1. Gumbel distribution

Suppose Vi, i = 1, 2, ..., k are random samples, then the Gumbel distribution

is given as follows:

fG(v, γ, ϑ) =
1

ϑ
exp

[
− v − γ

ϑ
− exp

(
− v−γ

ϑ

)]
,

with its log-likelihood function given as:

lnRG(γ, ϑ) = −klog(ϑ)−
k∑
i=1

v − γ

ϑ
−

k∑
i=1

exp
(
− v − γ

ϑ

)
(3.12)
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and its maximum likelihood estimators for location parameter (γ) and scale/dis-

persion parameter (ϑ) from equation (3.12) satisfies the following equations

(Kotz & Nadarajah, 2000).

γ̂ = −ϑ̂log

(
1

k

k∑
i=1

exp−
Vi
ϑ̂

)

and

ϑ̂ = X̄ −
∑k

i=1 Viexp
−Vi
ϑ̂∑k

i=1 exp
−Vi
ϑ̂

(3.13)

where, γ̂ is the estimator for γ, and ϑ̂ is the estimator for ϑ

2. Exponentiated Gumbel distribution

Suppose Vi, i = 1, 2, ..., k are random samples, then the Exponentiated Gum-

bel distribution is given as follows:

fEG(v) =
ϕ

ψ
exp
(
−v − ρ

ψ

)
exp
[
−exp

(
−v − ρ

ψ

)][
1−exp

{
−exp

(
−v − ρ

ψ

)}]ϕ−1

,

where −∞ < v <∞, and its log-likelihood function represented as;

lnR(ϕ, ψ, ρ) = klogϕ− kψ + (ϕ− 1)
k∑
i=1

log
[
1− exp

(
− exp

(
− v − ρ

ψ

))]
−

k∑
i=1

−v − ρ

ψ
−

k∑
i=1

exp
(
− v − ρ

ψ

)
(3.14)

hence, the three parameters of the exponentiated Gumbel distribution namely

shape parameter (ϕ), scale parameter (ψ) and the location parameter (ρ) are

estimated from equation (3.14) as given in the following equation (Nadara-

jah, 2006).

ϕ̂ =
k

ϕ
+

k∑
i=1

log
(
1− exp−e−

vi−ρ
ψ
)
,

ψ̂ = − k

ψ

k∑
i=1

vi − ρ

ψ2

(
1−exp−

vi−ρ
ψ
)
+
ϕ− 1

ψ2

k∑
i=1

(vi − ρ)exp−
vi−ρ
ψ − exp−exp−

vi−ρ
ψ

1− exp−exp−
vi−ρ
ψ
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and

ρ̂ =
k

ψ
− 1

ψ

k∑
i=1

exp−
vi−ρ
ψ +

ϕ− 1

ψ

k∑
i=1

exp−
vi−ρ
ψ − exp−exp−

vi−ρ
ψ

1− exp−exp−
vi−ρ
ψ

(3.15)

where, ϕ̂, ψ̂ and ρ̂ are the estimators.

3. Gumbel Geometric distribution

Suppose Vi, i = 1, 2, ..., k are random samples, then the probability density

function for Gumbel geometric distribution is given as:

f(v) =
(1− γ)

β
exp

(
− v − ϕ

β
− exp

(
− v − ϕ

β

))
×(

1− γ + γexp

(
− exp

(
− v − ϕ

β

)))−2

,

and from the probability density function, the log-likelihood function is ob-

tained as follows;

lnR(v, γ, β, ϕ) = klog(1− γ)− klog(β)− 2
k∑
i=1

log
(
1− γ + (γexp(−pi))

)
+

k∑
i=1

log(pi)−
k∑
i=1

pi (3.16)

by applying Maximum Likelihood Estimation method, that is taking par-

tial derivatives from equation(3.16), the parameters for geometric Gumbel

distribution namely shape parameter (γ), location parameter (ϕ) and scale

parameter (β) are estimated follows:

γ̂ = − k

1− γ
− 2

k∑
i=1

(
exp(−pi)− 1

)(
1− γ + γexp(−pi)

)−1

ϕ̂ =
k

β
− 1

β

k∑
i=1

pi +
2γ

β

k∑
i=1

piexp(−pi)
(
1− γ + γexp(−pi)

)−1
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β̂ = −k
β
− 1

β

k∑
i=1

log(pi) +
1

β

k∑
i=1

pilog(pi)

−2γ

β

k∑
i=1

pilog(pi)exp(−pi)
(
1− γ + γexp(−pi)

)−1
(3.17)

where pi = exp
(
− vi−ϕ

β

)
and γ̂, ϕ̂, and β̂ are the estimators for shape, location

and scale parameters respectively.

4. Weibull two parameters distribution

Suppose Vi, i = 1, 2, ..., k are random samples, then the probability distribu-

tion for Weibull distribution with two parameters namely shape parameter

(ϕ) and scale/dispersion parameter (γ) is given as follows:

f(v) =
ϕvϕ−1

γϕ
exp
[
−
(v
γ

)ϕ]
; (v, ϕ, γ) > 0,

From the probability density function, the parameters are estimated by max-

imizing the likelihood function of the distribution from which we obtain the

log likelihood function given as:

lnR(f(v)) = klogϕ− kϕlogγ + (ϕ− 1)
k∑
i=1

log(vi)−
k∑
i=1

(vi
γ

)ϕ
(3.18)

and the Maximum Likelihood estimates of ϕ and γ are obtained by dif-

ferentiating the log-likelihood function with respect to the parameters and

equating to zero. Given the log-likelihood function as in equation (3.18), the

parameters are estimated as indicated in the following equations (Gholami

et al., 2020).

γ̂ = −kϕ
γ

+
ϕ

γ

k∑
i=1

(vi
γ

)ϕ
=

(∑k
i=1 vi

ϕ

k

) 1
ϕ

,

ϕ̂ =

√
− 1

ϕ2
−
(vi
γ

)ϕ(
log
(vi
γ

))2
(3.19)
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where, γ̂ and ϕ̂ are the estimators for scale and shape parameters respec-

tively.

5. Three parameters Frechet distribution

Suppose Vi, i = 1, 2, ..., k are random samples, then the three parameters

Frechet distribution density function is given as (Mansour et al., 2018)

f(v) =
θσθψ2v−θ−1exp

[
−
(
σ
vi

)θ]
(1 + ψ)

{
1− exp

[
−
(
σ
vi

)θ]}3 exp

−ψexp
[
−
(
σ
vi

)θ]
1− exp

[
−
(
σ
vi

)θ]


From the probability distribution function above, the log likelihood function

is obtained as:

lnR = k
(
logθ + θlogσ + 2logψ − log(1 + ψ)

)
− (θ + 1)

k∑
i=1

log(vi)

−
k∑
i=1

( σ
vi

)θ − 3
k∑
i=1

log

{
1− exp

[
−
( σ
vi

)θ]}

−ψ
k∑
i=1

exp
[
−
(
σ
vi

)θ]
1− exp

[
−
(
σ
vi

)θ] (3.20)

and the maximum likelihood estimation of the parameters scale parameter

(σ), location parameter (ψ) and the shape parameters (θ) for the three

parameters Frechet distribution are given in the following equations

σ̂ =
kθ

σ
− θ

σ

k∑
i=1

( σ
vi

)θ
+ (ψ − 3)

θ

σ

k∑
i=1


(
σ
vi

)θ
exp
[
−
(
σ
vi

)θ]
1− exp

[
−
(
σ
vi

)θ]
 ,

ψ̂ =
2k

ψ
− k

(1 + ψ)
−

k∑
i=1

exp
[
−
(
σ
vi

)θ]
1− exp

[
−
(
σ
vi

)θ] ,
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and

θ̂ =
k

θ
+ klogσ −

k∑
i=1

log(vi)−
k∑
i=1

( σ
vi

)θ
log
( σ
vi

)
+(ψ − 3)

k∑
i=1


(
σ
vi

)θ
exp
[
−
(
σ
vi

)θ]
log
(
σ
vi

)
1− exp

[
−
(
σ
vi

)θ]
 , (3.21)

where, σ̂, ψ̂ and θ̂ are the estimators for scale, location and shape parameters

respectively.
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CHAPTER FOUR

Results and Discussion

This chapter explains the results obtained from the specific objectives. It explains

in details the step by step procedures for deriving the new three parameter Gum-

bel distribution, estimating its parameters using MLE, describing the parameter

properties (bias, MSE, consistency and efficiency) using simulated data, and the

application of the distribution to three sets of real life data.

4.1 Three-parameters Gumbel distribution formulation

This section provides a step by step procedure of formulating a three-parameters

Gumbel distribution and proving that it is a probability density function (pdf) as

discussed in subsection 4.1.1. This chapter also provides information about some

characteristic of the three-parameters Gumbel distribution like mean and variance

of the distribution as discussed in subsection 4.1.2 and 4.1.3 respectively.

4.1.1 Three parameters Gumbel distribution formulation

Model assumptions

The following assumptions were assumed for a three parameters Gumbel distribu-

tion.

1. The new parameters ω, τ, δ > 0

2. The parameters (ω, τ, δ) are less than ∞

3. All the parameters are members of real number i.e (ω, τ, δ ∈ R)
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4. The distribution obtained is a pdf

As discussed in section 3.1, the formulation of a three parameters Gumbel distri-

bution is done using Marshal Olkin method as given in equation (3.2). Consider

a random variable V , then the cdf is given as follows;

F̄ (v) = 1−F (v) whereby F (v) =
∫ k
v=0

f(v)dv, where f(v) is pdf of the random

variable V .

Therefore, having that,

F (k) =

∫ k

v=0

f(v)dv =
1

τ
exp
(
− v − ω

τ
− exp−

v−ω
τ

)
dv (4.1)

where,

ω is the location parameter

τ is the scale/dispersion parameter

Then using the laws of indices on the expression for f(v) results to,

F (k) =

∫ k

v=0

exp
(
exp−

v−ω
τ

)1
τ
exp−

v−ω
τ dv (4.2)

Now, by letting,

p = −exp−
v−ω
τ

gives,

dp =
1

τ
exp−

v−ω
τ dv

Using this substitution in equation (4.2), gives,

F (k) =

∫ k

v=0

exppdp = expp

= exp
(
− exp−

v−ω
τ

)
|kv=0

F (k) = exp
(
− exp−

k−ω
τ

)
− exp

(
− exp

ω
τ

)
. (4.3)
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Therefore given that;

F̄ (v) = 1− F (v)

F̄ (v) = 1 + exp
(
− exp

ω
τ

)
− exp

(
− exp−

v−ω
τ

)
(4.4)

With F̄ (v), the survival function for the random variable V as illustrated in equa-

tion (3.2) is given by:

S̄(v) =
δ
[
1 + exp

(
− exp

ω
τ

)
− exp

(
− exp−

v−ω
τ

)]
1−

{
(1− δ)

[
1 + exp

(
− exp

ω
τ

)
− exp

(
− exp−

v−ω
τ

)]} (4.5)

with the corresponding cumulative distribution function (cdf) obtained from equa-

tion (3.3) as follows,

F (v) =
exp
(
− exp−

v−ω
τ

)
− exp

(
− exp

ω
τ

)
1−

{
(1− δ)

[
1 + exp

(
− exp

ω
τ

)
− exp

(
− exp−

v−ω
τ

)]} (4.6)

and a probability distribution function (pdf) given as follows (as from equation

(3.4),

f(v) =
δ
τ
exp
(
− v−ω

τ
− exp−

v−ω
τ

)[
1−

{
(1− δ)

{
1 + exp

(
− exp

ω
τ

)
− exp

(
− exp−

v−ω
τ

)}}]2 (4.7)

where δ is the introduced shape parameter and (ω, τ, δ) > 0

Three-parameters Gumbel distribution obtained in equation (4.7) is mathemati-

cally different from the Generalized Extreme Value distribution in equation (1.4).

Also, its shape parameter is estimable (δ > 0) compared to the Generalized Ex-

treme Value distribution where if the shape parameter β equals zero the distribu-

tion to fall back to Gumbel distribution with two parameters scale and location.

Otherwise if β ̸= 0, then the Generalized Extreme Value distribution fall back to

either Weibull or Frechet distribution.
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Proving that the developed three-parameters Gumbel distribution is a

pdf:

To show that the expression in equation (4.7) is a pdf (that is
∫∞
v=0

f(v)dv = 1),

simplify the function by letting

q = exp(−exp
ω
τ ).

which makes the denominator of the function in equation (4.7) to become,

[
1− (1− δ)

{
1 + q − exp

(
− exp−

v−ω
τ

)}]2
,

from which it gives,

1−
[
1−

{
exp
(
− exp−

v−ω
τ

)}
+ q − δ + δ

{
exp
(
− exp−

v−ω
τ

)}
− qδ

]2
,

[{
exp
(
− exp−

v−ω
τ

)}
− q + δ − δ

{
exp
(
− exp−

v−ω
τ

)}
+ qδ

]2
,[{

exp
(
− exp−

v−ω
τ

)}
(1− δ) + δ + qδ − q

]2
Therefore, expression in equation (4.7) can be written as:

f(v) =
δ

τ

[
exp−

v−ω
τ exp

(
− exp−

v−ω
τ

)[
exp
(
− exp−

v−ω
τ

)
(1− δ) + δ + qδ − q

]2
]
, (4.8)

Hence getting,

∫
f(v)dv = δ

∫
exp
(
− exp−

v−ω
τ

)
1
τ
exp−

v−ω
τ[

exp
(
− exp−

v−ω
τ

)
(1− δ) + δ + qδ − q

]2 (4.9)

From equation (4.9), by letting

p = −exp−
v−ω
τ ,
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and,

dp =
1

τ
exp−

v−ω
τ dv,

for ease of integration, gives

∫
f(v)dv = δ

∫
exppdp[

ep(1− δ) + δ + qδ − q
]2 (4.10)

By rearranging the denominator in equation (4.10), gives,

∫
f(v)dv = δ

∫
exppdp[

(1− δ)(expp − q) + δ
]2 (4.11)

from which again if by letting

z = (1− δ)(expp − q) + δ

then,

dz = (1− δ)exppdp,

implying that

exppdp =
dz

1− δ
.

Therefore, from equation (4.11), it gives,

∫
f(v)dv =

δ

1− δ

∫
dz

z2
=

δ

(δ − 1)z

whose solution becomes,

δ

(δ − 1)z
=

δ

(δ − 1)
[
(1− δ)(expp − q) + δ

] ,
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and by taking the integration from v = 0 to k, gives

=
δ

(δ − 1)
[
(1− δ)(expp − q) + δ

]∣∣∣∣∣
k

v=0

(4.12)

The foregoing means that taking v = ∞ and also v = 0, then for v = ∞, expp =

exp
(
− exp−

v−ω
τ

)
= 1 and for v = 0, expp = exp

(
− exp−

v−ω
τ

)
= exp

(
− exp

ω
τ

)
= q.

Hence, the value for the integral from equation (4.12) becomes:

δ

δ − 1

[ 1

(1− δ)(1− q) + δ
− 1

(1− δ)(q − q) + δ

]
,

δ

δ − 1

[ 1

(1− δ)(1− q) + δ
− 1

δ

]
,

δ

δ − 1

[ δ − 1 + q − qδ[
(1− δ)(1− q) + δ

]
δ

]
,

Since, δ − 1 + q − qδ can be factored as δ − 1 + q(1− δ) = 1(δ − 1)− q(δ − 1) =

(1 − q)(δ − 1). Also, (1 − δ)(1 − q) + δ in the denominator can be simplified as

1− q − δ + qδ + δ = 1− q + qδ, then it gives,

δ

δ − 1

[(1− q)(δ − 1)

δ[1− q + qδ]

]
=

1− q

1− q + qδ
. (4.13)

But, knowing that,

q = exp(−exp
ω
τ )

and since, ω>τ , then it follows that q→0. And therefore, equation (4.13) ap-

proaches 1, that is,

1− q

1− q + qδ
→ 1,

hence f(v) is a pdf as required.
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4.1.2 Expected value of a three parameters Gumbel distribution

In this subsection, we are deriving the expected value of the three parameters

Gumbel distribution. This is because we cannot assume that the location param-

eter is the mean since the measures of location are mean, mode and median.

Given f(v) as the probability distribution function, the expected value (E(V )) is

obtained as;

E(v) =

∫
vf(v)dv

E(v) =

∫ ∞

−∞

v δ
τ
exp
(
− v−ω

τ
− exp−

v−ω
τ

)
dv[

1−
{
(1− δ)

{
1 + exp

(
− exp

ω
τ

)
− exp

(
− exp−

v−ω
τ

)}}]2 (4.14)

E(v) = δ

∫ ∞

−∞

v.exp
(
− exp−

v−ω
τ

)
1
τ
exp−

v−ω
τ dv[

1−
{
(1− δ)

{
1 + exp

(
− exp

ω
τ

)
− exp

(
− exp−

v−ω
τ

)}}]2 , (4.15)
by letting

z = exp−
v−ω
τ =⇒ln(z) = −v − ω

τ
=

−v
τ

+
ω

τ
=⇒v = ω − τ ln(z)

then it gives,

dz = −1

τ
exp−

v−ω
τ dv

by substituting v, z, and dz in equation (4.15), gives

E(v) = −δ
∫

(ω − τ ln(z)exp−zdz[
1−

(
(1− δ)(1− exp−z + q)

)]2 (4.16)

where

q = exp
(
− exp

ω
τ

)
Therefore,

E(v) = −δ
∫

ωexp−zdz[
1−

(
(1− δ)(1− exp−z + q)

)]2+(δτ)

∫
ln(z)exp−zdz[

1−
(
(1− δ)(1− exp−z + q)

)]2
(4.17)
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The function E(v) have two terms which are integrated as follows, for the first

term from equation (4.17), that is;

−δ
∫

ωexp−zdz[
1−

(
(1− δ)(1− exp−z + q)

)]2
letting p = (1 − δ)(exp−z − q) + δ then, dp = (1 − δ)(−exp−z) = (δ − 1)exp−zdz

implying that exp−zdz = dp
δ−1

. This gives,

−δ
∫

ωexp−zdz[
1−

(
(1− δ)(1− exp−z + k)

)]2 =
−(δω)

δ − 1

∫
dp

p2

=
−(δω)

δ − 1

[1
p

]
=

−(δω)

δ − 1

[ 1

1− δ)(exp−z − q) + δ

]
which is given as follows after re-substituting z

=
−(δω)

δ − 1

[ 1

(1− δ)(exp−exp
− v−ω

τ − q) + δ

]∣∣∣∞
−∞

this gives the following result after taking the integral with the limits of v from

−∞ to ∞

=
−(δω)

δ − 1

[ 1

(1− δ)(1− q) + δ
− 1

−q(1− δ) + δ

]
=

−(δω)

δ − 1

[
−q(1− δ) + δ − [(1− δ)(1− q) + δ]

[(1− δ)(1− q) + δ][−q(1− δ) + δ]

]

the integral for the first term finally becomes

δω

(δq + δ − q)(1− q + δq)
(4.18)

For the second terms in equation (4.17), which is given as,

(δτ)

∫
ln(z)exp−zdz[

1−
(
(1− δ)(1− exp−z + q)

)]2 = (δτ)

∫
ln(z)exp−z

[(1− δ)(exp−z − q) + δ]2

]
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Integration by parts is used to integrate the function. By applying the integration

by parts method, it follows that, wp−
∫
pdw is applied to solve the function. Let

w = ln(z) giving dw = dz
z
. Also by letting

dp =
exp−zdz[

(1− δ)(exp−z − q) + δ
]2

implying that

p =

∫
exp−zdz[

(1− δ)(exp−z − q) + δ
]2 =

−1

(δ − 1)[(1− δ)(exp−z − q) + δ]

this gives the integral result as

∫
ln(z)exp−z

[(1− δ)(exp−z − q) + δ]2

]
= wp−

∫
pdw

=
−ln(z)

(δ − 1)[(1− δ)(exp−z − q) + δ]
+

1

δ − 1

∫
dz

z[(1− δ)(exp−z − q) + δ]
(4.19)

Equation (4.19) shows that the function still requires integration by parts for the

second term, that is

1

δ − 1

∫
dz

z[(1− δ)(exp−z − q) + δ]
.

By letting

w =
1

[(1− δ)(exp−z − q) + δ]

implying that

dw = −[(1− δ)(exp−z − q) + δ]−2(δ − 1)exp−z.

Also, by taking dp = dz
z
gives p = ln(z). Therefore, getting

1

δ − 1

[ ln(z)

[(1− δ)(exp−z − q) + δ]
+ (δ − 1)

∫
ln(z)exp−z

[(1− δ)(exp−z − q) + δ]2

]
(4.20)
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Replacing equation (4.20) in equation (4.19), gives 0 implying that the function is

indeterminate and therefore it is undefined. The expected value is therefore given

as;

E(v) =
δω

(δq + δ − q)(1− q + δq)

=
δω

[δexp(−eωτ ) + δ − exp(−eωτ )][1− exp(−eωτ ) + δexp(−eωτ )]
(4.21)

4.1.3 The variance of a three parameters Gumbel distribution

This subsection discuss the variance of the three parameters Gumbel distribu-

tion. Knowing that, V ar(v) = E(v2) − [E(v)]2. The E(v) is already obtained in

subsection 4.1.2. Now E(v2) is obtained as follows.

E(v2) = δ

∫ ∞

−∞

v2.exp
(
− exp−

v−ω
τ

)
1
τ
exp−

v−ω
τ dv[

1−
{
(1− δ)

{
1 + exp

(
− exp

ω
τ

)
− exp

(
− exp−

v−ω
τ

)}}]2

E(v2) = δ

∫ ∞

−∞

v2.exp
(
− exp−

v−ω
τ

)
1
τ
exp−

v−ω
τ dv[

(1− δ)
(
exp(−exp

−v−ω
τ ) − q

)
+ δ
]2

In subsection 4.1.2, letting q = exp
(
− exp

ω
τ

)
and z = exp−

v−ω
τ =⇒v = ω − τ ln(z)

hence, v2 = (ω− τ ln(z))2=⇒v2 = ω2 − 2ωτln(z) + τ 2[ln(z)]2. From z function, it

gives

dz = −1

τ
exp−

v−ω
τ dv

Therefore, getting,

E(v2) = δ

∫ ∞

−∞

v2.exp
(
− exp−

v−ω
τ

)
1
τ
exp−

v−ω
τ[

(1− δ)
(
exp(−e

−v−ω
τ ) − q

)
+ δ
]2

= −δ
∫ (

ω2 − 2ωτln(z) + τ 2[ln(z)]2
)
exp−zdz

[(1− δ)(exp−z − q) + δ]2
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E(v2) = −δω2

∫
exp−zdz

[(1− δ)(exp−z − q) + δ]2
+ 2δωτ

∫
exp−zln(z)dz

[(1− δ)(exp−z − q) + δ]2

−δτ 2
∫

exp−z[ln(z)]2dz

[(1− δ)(exp−z − q) + δ]2
(4.22)

As evidence in subsection 4.1.2, the first term of E(v2) from equation (4.22) which

is ∫
exp−zdz

[(1− δ)(exp−z − q) + δ]2
=

1

(δq + δ − q)(1− q + qδ)
.

Also, the integral for the second term, that is

δωτ

∫
exp−zln(z)dz

[(1− δ)(exp−z − q) + δ]2
= 0

as evidence from equations (4.19) and (4.20).

This means that the only remaining integral solution is for the third term of E(v2)

in equation (4.22) which is given as

−δτ 2
∫

exp−z[ln(z)]2dz

[(1− δ)(exp−z − q) + δ]2

to integrate this function, apply integration by part again (that is, wp−
∫
pdw).

By letting w = (ln(z))2=⇒dw = 2ln(z)dz
z

. Again, letting,

dp =
exp−zdz

[(1− δ)(exp−z − q) + δ]2

implying that

p =

∫
exp−zdz

[(1− δ)(exp−z − q) + δ]2
=

−1

(δ − 1)[(1− δ)(exp−z − q) + δ]

Therefore, leading to the wp−
∫
pdw for the function given as;

∫
exp−z[ln(z)]2dz

[(1− δ)(exp−z − q) + δ]2
=

−[ln(z)]2

(δ − 1)[(1− δ)(exp−z − q) + δ]

+
2

δ − 1

∫
ln(z)dz

z[(1− δ)(exp−z − q) + δ]
(4.23)
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Using integration by parts again in the second term of equation (4.23), by letting

w =
1

[(1− δ)(exp−z − q) + δ]
=⇒dw = −[(1− δ)(exp−z − q) + δ]2(δ − 1)exp−z.

And, also letting

dp =
ln(z)dz

z
=⇒p =

[ln(z)]2

2
.

This gives,

2

δ − 1

∫
ln(z)dz

z[(1− δ)(exp−z − q) + δ]
=

2

δ − 1

[ [ln(z)]2

2[(1− δ)(exp−z − q) + δ]

+
δ − 1

2

∫
[ln(z)]2exp−z

[(1− δ)(exp−z − q) + δ]2

]
(4.24)

Replacing equation (4.24) in equation (4.23), gives 0 implying that the function

is indeterminate and therefore it is undefined. The E(v2) is therefore given as;

E(v2) =
δω2

(δq + δ − q)(1− q + qδ)
(4.25)

Therefore, V ar(v) = E(v2)− [E(v)]2 is obtained from equations (4.21) and (4.25)

as folows;

V ar(v) =
δω2

(δq + δ − q)(1− q + qδ)
−
[ δω

(δq + δ − q)(1− q + δq)

]2
=

δω2

(δq + δ − q)(1− q + qδ)
− δ2ω2

[(δq + δ − q)(1− q + δq)]2

=
δω2[(δq + δ − q)(1− q + δq)]− δ2ω2

[(δq + δ − q)(1− q + δq)]2

=
δω2
(
[(δq + δ − q)(1− q + δq)]− δ

)
[(δq + δ − q)(1− q + δq)]2

Replacing q gives us,

V ar(v) =
δω2
(
[(δexp(−eωτ ) + δ − exp(−eωτ ))(1− exp(−eωτ ) + δexp(−eωτ ))]− δ

)
[(δexp(−eωτ ) + δ − exp(−eωτ ))(1− exp(−eωτ ) + δexp(−eωτ ))]2

(4.26)
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4.2 Parameter Estimation

This section demonstrates Maximum Likelihood Estimation technique for the pur-

pose of estimating the parameters of a three-parameter Gumbel distribution. The

process of estimating each of the three parameters namely; the location parameters

(ω), scale/dispersion parameter (τ) and the shape parameter (δ) using Maximum

Likelihood Estimation method in subsections 4.2.2, 4.2.3 and 4.2.4 respectively.

The Maximum Likelihood Estimation method involves three steps, that is, getting

the likelihood function, the log of the likelihood function and the derivative with

respect to the required parameter.

4.2.1 Maximum Likelihood Estimation for the parameters

Considering the probability distribution function given in equation (4.7), its like-

lihood function is given follows,

R =
k∏
i=1

f(vi)

=
k∏
i=1

δ

τ

[
exp
(
− vi−ω

τ
− exp

−vi−ω
τ

)[
1− (1− δ)

(
1− exp

(
− exp

−vi−ω
τ

)
+ exp(−expωτ )

)]2
]

where R is the symbol used in this study to represent likelihood function

R(vi; δ, ω, τ) =
( δ
τ

)k exp
∑k

i=1

(
− vi−ω

τ
− exp

−vi−ω
τ

)[
exp

∑k
i=1 ln

[
1− (1− δ)

(
1− exp

(
− exp

−vi−ω
τ

)
+ exp(−expωτ )

)]]2
(4.27)

The likelihood function R, can be expressed with a variable together with param-

eters to be estimated as shown in equation (4.27), and its log-likelihood function
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which maximizes the parameters becomes

ln(R) = k
{
ln
( δ
τ

)}
+

k∑
i=1

[
−
(vi − ω

τ

)
− exp−

(
vi−ω
τ

)]
−2

k∑
i=1

ln
[
1− (1− δ)

(
1− exp

(
− exp

−vi−ω
τ

)
+ exp(−exp

ω
τ )
)]

(4.28)

4.2.2 Parameters estimation for δ

With the log likelihood function, the estimate for δ is obtained by performing the

partial derivative for the log likelihood function with respect to δ and equating the

result to zero (that is, computing ∂ln(R)
∂δ

). This is done by considering the terms in

equation (4.28) containing δ because it is known that terms independent of δ will

definitely give a derivative result of zero. In equation (4.28), the first term (that

is, k
{
ln
(
δ
τ

)}
, which is differentiated with respect to δ as follows:

d = k
{
ln
( δ
τ

)}
then,

∂d

∂δ
=
τ

δ
.
k

τ
=
k

δ
(4.29)

And letting c to represent the second term with δ then,

c = −2
k∑
i=1

ln
[
1− (1− δ)

(
1− exp

(
− exp

−vi−ω
τ

)
+ exp(−exp

ω
τ )
)]
,

which is differentiated with respect to δ as follows:

by letting,

p = 1− (1− δ)
[
1− exp

(
− exp

−vi−ω
τ

)
+ exp(−exp

ω
τ )
]

= 1− 1
[
1− exp

(
− exp

−vi−ω
τ

)
+ exp(−exp

ω
τ )
]
+ δ
[
1− exp

(
− exp

−vi−ω
τ

)
+ exp(−exp

ω
τ )
]
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Therefore, it gives,

dp

∂δ
=
[
1− exp

(
− exp

−vi−ω
τ

)
+ exp(−exp

ω
τ )
]

Now differentiating c with respect to p, gives,

dc

dp
=

k∑
i=1

(lnp) = 2
k∑
i=1

1

p
(4.30)

This leads to,

∂c

∂δ
= 2

k∑
i=1

[
1− exp

(
− e

−vi−ω
τ

)
+ exp(−eωτ )

]
p

(4.31)

Thus we have the estimate of δ obtained from equations(4.29) and (4.31) as,

δ̂ =
∂ln(L)

∂δ
=
k

δ
− 2

k∑
i=1

[
1− exp

(
− exp

−vi−ω
τ

)
+ exp(−expωτ )

]
p

= 0, (4.32)

where,

p = 1− (1− δ)
[
1− exp

(
− exp

−vi−ω
τ

)
+ exp(−exp

ω
τ )
]

4.2.3 Parameters estimation for ω

This subsection shows the process of estimating the location parameter ω by the

use of maximum likelihood estimate. By using the log likelihood function in

equation (4.28) and working out the partial derivative while equating to zero, it

is assumed that the term in the equation without ω have their partial derivatives

equals to zero hence leaving the study to work out partial derivatives of only terms

having ω as follows;

For the second term whereby

k∑
i=1

[
−
(vi − ω

τ

)
− exp−

(
vi−ω
τ

)]
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by letting

r = −
(vi − ω

τ

)
= −vi

τ
+
ω

τ

This results to,

∂r

∂ω
=

1

τ
(4.33)

Also, by letting

s = exp−
(
vi−ω
τ

)
and,

r = −
(vi − ω

τ

)
then

∂s

∂ω
=

1

τ
expr =

1

τ
exp−

(
vi−ω
τ

)
(4.34)

Combining ∂r
∂ω
, ∂s
∂ω
, results to the derivative of the second term with respect to ω

given as;

k∑
i=1

[1
τ
− 1

τ
exp−

(
vi−ω
τ

)]
1

τ

k∑
i=1

[
1− exp−

(
vi−ω
τ

)]
(4.35)

For the third term letting,

t = −2
k∑
i=1

ln
[
1− (1− δ)

(
1− exp

(
− exp

−vi−ω
τ

)
+ exp(−exp

ω
τ )
)]

and also by letting,

p = 1− (1− δ)
[
1− exp

(
− exp

−vi−ω
τ

)
+ exp(−exp

ω
τ )
]
,
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obtains,

∂t

∂ω
= 2(1− δ)

k∑
i=1

[
exp
(
− e

(
− vi−ω

τ

))
.e

(
− vi−ω

τ

)
− e

ω
τ .exp(−eωτ )

pτ

]
(4.36)

Combining ∂r
∂ω
, ∂s
∂ω

and ∂t
∂ω

as given in equations (4.33), (4.34) and (4.36) respec-

tively gives the maximum likelihood estimate for ω as;

ω̂ =
∂ln(L)

∂ω
=

1

τ

k∑
i=1

[
1− exp−

(
vi−ω
τ

)]

+2(1− δ)
k∑
i=1

[
exp
(
− e

(
− vi−ω

τ

))
.e

(
− vi−ω

τ

)
− e

ω
τ .exp(−eωτ )

pτ

]
= 0 (4.37)

where,

p = 1− (1− δ)
[
1− exp

(
− exp

−vi−ω
τ

)
+ exp(−exp

ω
τ )
]

4.2.4 Parameters estimation for τ

This subsection explains the process of obtaining the maximum likelihood estima-

tor for τ by partially differentiating the log likelihood function given below with

respect to τ and equating to zero as follows.

ln(R) = k
{
ln
( δ
τ

)}
+

k∑
i=1

[
−
(vi − ω

τ

)
− exp−

(
vi−ω
τ

)]
−2

k∑
i=1

ln
[
1− (1− δ)

(
1− exp

(
− exp

−vi−ω
τ

)
+ exp(−exp

ω
τ )
)]

The first term of the likelihood function is differentiated using chain rule as follows,

let,

p = k
{
ln
( δ
τ

)}
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therefore,

∂p

∂τ
=

−k
τ

(4.38)

For the second term of the log likelihood function, letting

m = −
(vi − ω

τ

)
,

∂m

∂τ
= (vi − ω)τ−1 = (vi − ω)τ−2 =

vi − ω

τ 2
(4.39)

Again by letting

r = exp−
(
vi−ω
τ

)
, and first dealing with the term in the parenthesis, by letting this

term be m = −
(
vi−ω
τ

)
.

results to,

∂r

∂τ
= (expr).

vi − ω

τ 2
=
vi − ω

τ 2
.exp−

(
vi−ω
τ

)
(4.40)

Therefore, the derivative of the second term with respect to τ becomes,

k∑
i=1

[vi − ω

τ 2
− vi − ω

τ 2
.exp−

(
vi−ω
τ

)]
1

τ 2

k∑
i=1

[
vi − ω

][
1− exp−

(
vi−ω
τ

)]
(4.41)

The third term of the function is,

t = −2
k∑
i=1

ln
[
1− (1− δ)

(
1− exp

(
− exp

−vi−ω
τ

)
+ exp(−exp

ω
τ )
)]
,

about which letting,

p = 1− (1− δ)
(
1− exp

(
− exp

−vi−ω
τ

)
+ exp(−exp

ω
τ )
)

The function for t has two terms with parameter τ which are differentiated with

respect to τ as follows.
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For,

g = −exp
(
− exp

−vi−ω
τ

)
,

letting

h = −exp
−vi−ω
τ ,

and,

j =
−vi − ω

τ
,

then,

dh

dτ
=
dh

dj
.
dj

dτ
= −expt.vi − ω

τ 2
= −exp

−vi−ω
τ .

vi − ω

τ 2

Hence,

dg

dτ
=

dg

dh
.
dh

dτ

= −exph.− exp
−vi−ω
τ .

vi − ω

τ 2

= exp
(
− exp

−vi−ω
τ

)
.exp

−vi−ω
τ .

vi − ω

τ 2
(4.42)

The last term in the t function is exp(−expωτ ) for which is written by letting

h = −expωτ and the power is written as j = ω
τ
.

From which,

dh

dτ
=

d

dj
.
dj

dτ
= −expt.− ω

τ 2
=

ω

τ 2
exp

ω
τ ,

Hence,

d

dh
.
dh

dτ
= exph.

ω

τ 2
exp

ω
τ

=
ω

τ 2
exp(−exp

ω
τ )exp

ω
τ (4.43)

Using equations (4.42) and (4.43), the derivative for the t function with respect

to τ becomes,

∂p

∂τ
= −(1− δ)

[vi − ω

τ 2
exp
(
− e

−vi−ω
τ

)
.e

−vi−ω
τ +

ω

τ 2
exp(−e

ω
τ )e

ω
τ

]
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Because of equation (4.30), the final derivative for the third term in the log like-

lihood function with respect to τ is

∂t

∂τ
= −2(1− δ)

k∑
i=1

(vi − ω)exp
(
− e

−vi−ω
τ

)
.e

−vi−ω
τ + ω.exp(−eωτ )eωτ

τ 2p
= Q (4.44)

where,

p = 1− (1− δ)
[
1− exp

(
− exp

−vi−ω
τ

)
+ exp(−exp

ω
τ )
]
.

Therefore, the estimator for τ is given as follows from equations (4.38), (4.41) and

(4.44) above

τ̂ =
∂ln(L)

∂τ
=

−k
τ

+
1

τ 2

k∑
i=1

[
vi − ω

][
1− exp−

(
vi−ω
τ

)]
+Q = 0 (4.45)

where Q is defined in equation (4.44)
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4.3 Properties of the Estimators

This section discusses the symmetrical behaviour of a three-parameter Gumbel

distribution, asymptotic properties of the estimators with a view to investigating

their asymptotic bias, whereby we investigate if each of the three parameters are

asymptotically unbiased as the sample size becomes large. We also investigate

their Mean Square Error (MSE) in subsection (4.3.3) in order to ascertain if in

each case the MSE tends to zero as the sample size approaches infinity (that is, the

sample size becomes very large). We also discuss the consistency of the parameters

in subsection (4.3.4) to investigate the precision and reliability of the estimators

as we increase the sample size. Finally, in subsection (4.3.5), we compare the

asymptotic relationship between a three parameters Gumbel distribution and other

distributions like normal, chi-square and Weibull respectively using simulated data

sets of different sample sizes.

4.3.1 Investigating the symmetrical behaviour of a three-parameters

Gumbel distribution using simulation

Knowing the type of distribution is very important before using the distribution

for modelling or analyzing any type of data. The well known types of distribution

categories are discrete or continuous. The introduced three-parameters Gumbel

distribution is continuous distribution like the mother two parameters Gumbel

distribution. A distribution can be continuous but symmetrical, left/negatively

skewed or right skewed/positively skewed.

To simulate data, the study used inverse transformation technique by making v

the subject from the cdf function of a three-parameters Gumbel distribution. The

cdf function is given as follows from equation 4.6.

F (v) =
exp
(
− e−

v−ω
τ

)
− exp

(
− e

ω
τ

)
1−

{
(1− δ)

[
1 + exp

(
− e

ω
τ

)
− exp

(
− e−

v−ω
τ

)]}
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let

U = F (v) =
exp
(
− e−

v−ω
τ

)
− exp

(
− e

ω
τ

)
1−

{
(1− δ)

[
1 + exp

(
− e

ω
τ

)
− exp

(
− e−

v−ω
τ

)]} (4.46)

where U follows a uniform distribution. Then it is solved as follows to make v the

subject with respect to U from equation 4.46.

U
[
1−

{
(1− δ)

[
1+ exp

(
− e

ω
τ

)
− exp

(
− e−

v−ω
τ

)]}]
= exp

(
− e−

v−ω
τ

)
− exp

(
− e

ω
τ

)
U − U(1− δ)

[
1 + exp

(
− e

ω
τ

)
− exp

(
− e−

v−ω
τ

)]
= exp

(
− e−

v−ω
τ

)
− exp

(
− e

ω
τ

)
U−U(1−δ)

[
1+exp

(
−e

ω
τ

)]
+U(1−δ)

[
exp
(
−e−

v−ω
τ

)]
= exp

(
−e−

v−ω
τ

)
−exp

(
−e

ω
τ

)
(4.47)

collecting the like terms in equation 4.47 gives,

U(1−δ)
[
exp
(
−e−

v−ω
τ

)]
−exp

(
−e−

v−ω
τ

)
= −U+U(1−δ)

[
1+exp

(
−e

ω
τ

)]
−exp

(
−e

ω
τ

)
factoring the LHS gives,

exp
(
− e−

v−ω
τ

)[
U(1− δ)

]
= −U + U(1− δ)

[
1 + exp

(
− e

ω
τ

)]
− exp

(
− e

ω
τ

)
hence,

exp
(
− e−

v−ω
τ

)
=
U(1− δ)

[
1 + exp

(
− e

ω
τ

)]
− U − exp

(
− e

ω
τ

)[
U(1− δ)

] (4.48)

To remove the exponential from equation 4.48, logarithm is applied twice as fol-

lows:

Taking the first logarithm gives,

−exp−
v−ω
τ = ln

[U(1− δ)
[
1 + exp

(
− e

ω
τ

)]
− U − exp

(
− e

ω
τ

)[
U(1− δ)

] ]
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To remove the negative in the LHS, both sides are diveded by -1 which results to:

exp−
v−ω
τ = ln

[ [
U(1− δ)

]
U(1− δ)

[
1 + exp

(
− e

ω
τ

)]
− U − exp

(
− e

ω
τ

)] (4.49)

Taking the second logarith from equation 4.49, results to;

−v − ω

τ
= ln

[
ln
[ [

U(1− δ)
]

U(1− δ)
[
1 + exp

(
− e

ω
τ

)]
− U − exp

(
− e

ω
τ

)]]

v + ω

τ
= −ln

[
ln
[ [

U(1− δ)
]

U(1− δ)
[
1 + exp

(
− e

ω
τ

)]
− U − exp

(
− e

ω
τ

)]]

v + ω = −τ ln

[
ln
[ [

U(1− δ)
]

U(1− δ)
[
1 + exp

(
− e

ω
τ

)]
− U − exp

(
− e

ω
τ

)]]

vi = −ω − τ ln

[
ln
[ [

U(1− δ)
]

U(1− δ)
[
1 + exp

(
− e

ω
τ

)]
− U − exp

(
− e

ω
τ

)]] (4.50)

where;

ω = location parameter > 0

τ = scale/dispersion parameter > 0

δ = shape parameter > 0

U = is the transformation which follows uniform distribution.

To comment on the nature of symmetry of a three-parameter Gumbel distribution,

inverse transformation method was used to simulate data using equation 4.50 and

the results are as discussed below:

When the location parameter (ω) is constant and n = 10000

Setting the location parameter constant and varying scale and shape parameters

at n = 10000, a three-parameters Gumbel distribution appears as given figure 4.1.

Figure 4.1, shows that if a three-parameters Gumbel distribution is used to simu-

late data with a fixed location parameter, the distribution appeared to the skewed

to the right (positively skewed). The two-parameter Gumbel distribution which

was the baseline for modelling the new three-parameters Gumbel distribution is a
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distribution known for analyzing/modelling the extreme data sets, meaning that

it is skewed distribution. This makes it reasonable to support the results in Fig-

ure 4.1 which are showing that a three-parameters Gumbel distribution is right

skewed distribution.

56



Figure 4.1: Distributions when ω and n are constant
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When the scale parameter (τ) is constant and n = 10000

Figure 4.2 shows that when the scale/dispersion parameter is held constant at

any given sample size and vary the values for location parameter and the shape

parameter when simulating data, a three parameters Gumbel distribution still

appears to be skewed to the right. A property that makes the distribution good

for modelling/analyzing extreme data sets and skewed data sets.

When the shape parameter (δ) is constant and n = 10000

For simulation of 10000 samples using a three-parameters Gumbel distribution

when the shape parameter is held constant, it can be observed from Figure 4.3

that manipulating the simulation values for the location parameter and the scale

parameter retains the distribution as right skewed distribution. This means that

the simulation results will still yield a right skewed distribution even if the sample

size is increased or decreased.

When the sample size is varying

Figure 4.4 shows how a three-parameters Gumbel distribution behaves when the

simulation samples are increased. When the samples are increased from 1000

to 1000000, at a given level for the location, scale and shape parameters, the

distribution is skewed to the right/positively skewed. This leads to the conclusion

that at any given sample size will produce samples which are positively skewed.
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Figure 4.2: Distributions when τ and n are constant

Figures 4.1,4.2,4.3, and 4.4 demonstrates that a three-parameters Gumbel dis-

tribution is a positively skewed distribution (skewed to the right). Therefore,

the distribution is applicable for analyzing positively skewed data sets and also

extreme data (because extreme data are skewed data with high level of skeweness).
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Figure 4.3: Distributions when δ are n are constant

4.3.2 Asymptotic bias

One important problem to the interpretation of quantitative data analysis and

statistical modeling is the danger of bias of estimators, leading to inconsistent

estimates in statistical analysis which do not tend to be close to the right answer

asymptotically (as data sets approaches infinity). An asymptotically unbiased

estimator is an estimator that is right on average as the sample size becomes very

large (that is, as k → ∞), bias converges to 0 and the fact is that all unbiased

estimators are asymptotically unbiased. This was explained using asymptotic

distributions as shown in Figures 4.5, 4.6 and 4.7 respectively.
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Figure 4.4: Distributions when ω, τ and δ are constant and n is varying

Asymptotic biasedness for ω

From Figure 4.5, it can be observed that as the sample size increases, the dis-

tribution for parameter ω approaches normal distribution. This means that the
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Figure 4.5: Asymptotic distributions for ω

information at the Maximum Likelihood Estimation, estimated the true value of

ω (but unknown) as the sample size becomes large. This is clear since it is evi-
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dently supported by the asymptotic behaviuor of the ω as the sample size for the

simulated data is increased from 100, 1000, 10000 and 100000 respectively. The

normality approach as the sample size become large for the parameter indicates

that bias is small enough to be definitely acceptable meaning that the estimate of

the said parameter ω is suitably close to the true population value as the sample

size becomes large and therefore, implying that the parameter ω is unbiased as

the sample size approaches infinity, that is, bias(ω̂, ω) → 0 as k → ∞ (that is, as

k, the sample size becomes larger and larger).

Asymptotic biasedness for δ

Figure 4.6 below, show the distribution of parameter δ for simulated data sets

with different sample sizes, that is, samples of sizes 100, 1000, 10000 and 100000

respectively. This shows the asymptotic behavour of the parameter as the sample

size increases, indicating that as the sample size increases the distribution of δ

approaches normal distribution. This means that the estimated value of the δ

reflects the true value of parameter δ as the sample size becomes large. The

normality approach as the sample size become large for the parameter indicates

that bias is small enough to be tolerable meaning that the estimate of parameter

δ is adequately close to the true population value as the sample size becomes large

and therefore, implying that the said parameter δ is unbiased as the sample size

approaches infinity,that is, bias(δ̂, δ) → 0 as k → ∞.
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Figure 4.6: Asymptotic distributions for δ
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Asymptotic biasedness for τ

Figure 4.7: Asymptotic distributions for τ

The asymptotic behaviuor of the parameter τ was studied at different sam-
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ple sizes of the simulated data which were samples of size 100, 1000, 10000 and

100000. For parameter τ , it can be observed from Figure 4.7 that for the sample

sizes 100 and 1000, the distribution for the parameter τ is kind of skewed to the

left.

As the sample size increases as can be observed under sample size of 10,000 and

100,000 as shows in Figure 4.7, it can be observed that, the distribution for pa-

rameter τ approaches normal distribution. The normality approach as the sample

size become large for the parameter τ indicates that bias is small enough to be

definitely acceptable as the same case with parameters ω and δ, meaning that the

estimate of parameter τ is clearly close to the true population value of parameter

τ as the sample size becomes large and therefore, implying that the parameter τ is

unbiased as the sample size approaches infinity, that is bias(τ̂ , τ) → 0 as k → ∞.

4.3.3 Mean Square Error

This subsection discusses the Mean Square Error of the estimators as k becomes

large for the purpose of understanding precision the estimators. A precise estimate

is one in which the variability in the estimation error is small. This estimator is

defined as the expected value of the square of the difference between the expected

value and the parameter or the average square difference between the estimated

value and the actual value of the parameter. The Mean Square Error is usually

positive but not zero as the errors approaches zero because the estimators does not

comprise of information that could lead to a completely accurate estimate. This

shows that the Mean Square Error for a good estimator should tend to zero as the

sample size approaches infinity. Because the estimators are unbiased, the Mean

Square Error is the variance of the estimator. The results for the Mean Square

Error for simulated data sets of sizes 100, 1000, 10000 and 100000 are given in

Table 4.1.

From Table 4.1, it can be clearly observed that as the sample size increases

for all the three parameters (ω, δ and τ), the Mean Square Errors (MSE) of their
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Table 4.1: Mean and MSE of the parameters

Statistic n = 100 n = 1000 n = 10,000 n = 100,000
ω̄ 3.0047 2.6535 2.6211 2.6220

MSE(ω̂) 11.6756 1.2334 0.0014 0.0002
δ̄ 5.4234 4.5177 4.3591 4.3312

MSE(δ̂) 8.8773 0.8509 0.1116 0.0129
τ̄ 1.5397 1.4492 1.4419 1.4429

MSE(τ̂) 1.4910 0.1554 0.0012 0.0001

estimators approaches zero. This is a clear indication that as the sample size

becomes very large the errors approaches zero hence leading to the provision of

accurate estimate values, that is, the estimate values that nearly approaches the

true value of the parameter.

4.3.4 Consistency

In this subsection, we now check if the estimators are precise and reliable as

sample size,k, becomes large which is proved by considering the consistency of the

estimators. An estimator is said to be consistent if the precision and reliability of

its estimate improve with increase in sample size as discussed in section 3.3. From

the concept of law of large numbers, an estimator is termed as consistent if its bias

and standard error tends to zero as the sample size tends to infinity. Subsection

4.3.2 confirmed that the estimators for parameters ω, δ and τ are unbiased as the

sample sizes approaches infinity. This section therefore, presents the consistency

of the estimators for normally distributed data, skewed data and extreme data as

discussed below.

Consistency analysis using normally distributed data

The normally distributed data was generated using the normal concept. The data

was simulated for different sample sizes of 100, 1000, 10000, 100000 and 1000000.

The simulated data was used to demonstrate if the estimators are consistent as

the sample size increase.

From Table 4.2, it can be seen that as the sample size increase from 100 to
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Table 4.2: Estimates and standard errors for normal data

Parameter n = 100 n = 1000 n = 10,000 n = 100,000 n = 1,000,000
ω̂ 2.5279 2.6361 2.5997 2.6234 2.6202

s.e(ω̂) 0.3140 0.1031 0.0329 0.0106 0.0033

δ̂ 5.4317 4.2028 4.4488 4.3123 4.3508

s.e(δ̂) 2.7317 0.6197 0.2121 0.0651 0.0208
τ̂ 1.3267 1.4917 1.4313 1.4462 1.4424

s.e(τ̂) 0.1587 0.0556 0.0166 0.0053 0.0017

1,000,000 the standard errors for estimated values of ω, δ and τ tends to zero. This

provides sufficient evidence to conclude that as the sample size of the normally

distributed data approaches infinity, the estimators of the parameters are consis-

tent since their respective standard errors approach zero, that is s.e(ω̂, δ̂, τ̂) → 0

as k → ∞.

For the purpose of the asymptotic behaviuor of the estimates, it is important to

determine the relationship between the estimates. Table 4.3 shows that there is a

slight variation in the relationship between the estimates, that is, the relationship

between the estimates is almost same irrespective of the sample size.

Table 4.3: Correlation between the estimators

Sample size Estimator ω δ τ
n = 100 ω 1.0000 -0.8872 0.7994

δ -0.8872 1.0000 -0.8952
τ 0.7994 -0.8952 1.0000

n = 1,000,000 ω 1.0000 -0.8903 0.8218
δ -0.8903 1.0000 -0.8932
τ 0.8218 -0.8932 1.0000

In Table 4.3, the correlation coefficient between ω and δ for a sample size of 100

is -0.8872 and for a sample size of 1,000,000 the correlation coefficient is -0.8903.

This shows that there is a strong negative relationship between ω and δ implying

that for any given sample size a decrease/increase in the estimated value for ω

leads to increase/decrease in the estimated value for δ (with a stronger relation-

ship as the sample size becomes large).

The relationship between ω and τ is 0.7994 for sample size of 100 and 0.8218 for

sample size of 1,000,000. This means that there is almost a strong positive rela-
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tionship between the estimated values of ω and τ , implying that increase/decrease

in the estimated values of ω results to increase/decrease in the estimated values

of τ for any given sample size for normally distributed data sets, but with more

strength of correlation as the sample size approaches infinity.

Lastly, τ and δ provided a correlation coefficients of -0.8952 and -0.8932 for the

sample size of 100 and 1,000,000 respectively. This shows that there is a strong

negative relationship between τ and δ implying that for any given sample size a

decrease/increase in the estimated value for τ leads to increase/decrease in the

estimated value for δ.

Consistency analysis using skewed data

The skewed data was generated using the chi-square distribution which is known

to be a right/positively skewed distribution. The data was simulated for different

sample sizes (100, 1000, 10000, 100000 and 1000000). The simulated data was

used to demonstrate if the estimators are consistent as the sample size increase

for skewed data. The results provided in Table 4.4 shows that as the sample size

increase from 100 to 1,000,000 the standard errors for estimated values of ω, δ and

τ approaches zero. This supports the conclusion that as the sample size of skewed

data sets approaches infinity, the estimators of the parameters are consistent since

their respective standard errors approach zero.

Table 4.4: Estimates and standard errors for skewed data

Parameter n = 100 n = 1000 n = 10,000 n = 100,000 n = 1,000,000
ω̂ 4.3908 4.8235 4.9245 4.9538 4.9501

s.e(ω̂) 1.0781 0.4320 0.1466 0.0465 0.0147

δ̂ 0.6108 0.3989 0.3925 0.4046 0.4011

s.e(δ̂) 0.4182 0.0953 0.0325 0.0105 0.0033
τ̂ 2.6300 2.9614 2.9034 2.9335 2.9356

s.e(τ̂) 0.5201 0.2114 0.0689 0.0219 0.0069

Further, it is important to investigate the relationship between the estimated

values of the parameters for skewed data sets. This is presented in Table 4.5
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which shows that there is a small variation in the correlation coefficient between

the estimates for any change in the sample size.

Table 4.5: Correlation between the estimators

Sample size Estimator ω δ τ
n = 100 ω 1.0000 -0.9665 0.9197

δ -0.9665 1.0000 -0.8976
τ 0.9197 -0.8976 1.0000

n = 1,000,000 ω 1.0000 -0.9766 0.9470
δ -0.9766 1.0000 -0.9165
τ 0.9470 -0.9165 1.0000

In Table 4.5, the correlation coefficient between ω and δ for a sample size of

100 is -0.9665 and for a sample size of 1,000,000 the correlation coefficient is -

0.9766 which demonstrates that as the sample size increases the relationship gets

stronger. This further shows that there is a strong negative relationship between

ω and δ implying a decrease/increase in the estimated value for ω leads to in-

crease/decrease in the estimated value for δ.

Next, the relationship between ω and τ is 0.9197 and 0.9470 for sample size of 100

and 1,000,000 respectively, indicating that the relationship is somehow developing

stronger as the sample size approaches infinity. The strong positive relationship

between the estimated values of ω and τ , implying that increase/decrease in the

estimated values of ω results to increase/decrease in the estimated values of τ for

skewed data sets.

Lastly, τ and δ provided a correlation coefficients of -0.8976 and -0.9165 for the

sample size of 100 and 1,000,000 respectively, meaning that the relationship is

developing stronger as the sample size approaches infinity. Hence, the strong

negative relationship between τ and δ implying that a decrease/increase in the

estimated value for τ leads to increase/decrease in the estimated value for δ for

the skewed data sets.
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Consistency analysis using extreme data

One of the best distribution for modeling extreme data sets is the Weibull distri-

bution. This leads to the simulation of extreme data sets for different sample sizes

(that is, samples of size 100, 1000, 10000, 100000 and 1000000) using the Weibull

distribution. The simulated data was applied to study if the estimators are con-

sistent as the sample size for extreme data are increased. The results provided in

Table 4.6 shows that as the sample size increase from 100 to 1,000,000 the stan-

dard errors for estimated values of ω, δ and τ approaches zero as the sample sizes

tends to infinity. This supports the conclusion that as the sample size of extreme

data sets approaches infinity, the estimators of the parameters are consistent since

their respective standard errors approach zero.

Table 4.6: Estimates and standard errors for extreme data

Parameter n = 100 n = 1000 n = 10,000 n = 100,000 n = 1,000,000
ω̂ 0.9382 0.8004 0.7549 0.7633 0.7618

s.e(ω̂) 0.1985 0.0614 0.0161 0.0052 0.0016

δ̂ 10.8587 23.2746 32.6220 30.1165 30.7807

s.e(δ̂) 9.6346 6.3402 2.5801 0.7565 0.2455
τ̂ 0.3179 0.3156 0.3028 0.3065 0.3054

s.e(τ̂) 0.0351 0.0098 0.0029 0.0009 0.0003

Because the estimators are consistent, it is important to comment on the re-

lationship between the estimated values of the parameters for extreme data sets

as sample size becomes large. The results for the relationship is presented in Ta-

ble 4.7 which shows that there is a small variation in the correlation coefficient

between the estimates for any change in the sample size.

Table 4.7: Correlation between the estimators

Sample size Estimator ω δ τ
n = 100 ω 1.0000 -0.9442 0.5758

δ -0.9442 1.0000 -0.7594
τ 0.5758 -0.7594 1.0000

n = 1,000,000 ω 1.0000 -0.8997 0.4777
δ -0.8997 1.0000 -0.7614
τ 0.4777 -0.7614 1.0000
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In Table 4.7, the correlation coefficient between ω and δ for a sample size of 100

is -0.9442 and for a sample size of 1,000,000 the correlation coefficient is -0.8797

which demonstrates that as the sample size increases the relationship gets slightly

weaker. This further shows that there is a negative relationship between ω and

δ implying a decrease/increase in the estimated value for ω leads to increase/de-

crease in the estimated value for δ.

Secondly, the relationship between ω and τ is 0.5758 and 0.4777 for sample size

of 100 and 1,000,000 respectively, indicating that the relationship is becoming

weaker as the sample size approaches infinity. The positive relationship between

the estimated values of ω and τ , implying that increase/decrease in the estimated

values of ω results to increase/decrease in the estimated values of τ .

Lastly, τ and δ provided a correlation coefficients of -0.7594 and -0.7614 for the

sample size of 100 and 1,000,000 respectively, meaning that the relationship is

becoming slightly stronger as the sample size approaches infinity. Hence, the

moderate negative relationship between τ and δ implying that a decrease/increase

in the estimated value for τ leads to increase/decrease in the estimated value for

δ for the extreme data sets.

4.3.5 Asymptotic relationship between three parameters Gumbel dis-

tribution and other distributions

This subsection discusses the asymptotic relationship between a three parameter

Gumbel distribution and other common distributions like the normal distribution,

chi square distribution and Weibull distribution. The three distributions namely

normal, chi-square and Weibull are well known for the purpose of modeling of

data which is either normally distributed data or right(positively) skewed data or

extreme data respectively. The asymptotic relationship between three parameters

Gumbel distribution and the three distributions (that is, normal, chi-square and

Weibull) is discussed on below.
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Relationship between a three parameters Gumbel distribution and nor-

mal distribution

Asymptotic normality states that as the sample size becomes large, the distribu-

tion tends to be normal. This is also supported by the Central Limit Theorem

(CLT) which clarifies that the behaviour of the random variable V as the sample

size approaches infinity, is expected to shift the variance and the mean of the

variable making it tend to be normally distributed.

Figure 4.8 below shows the behaviour of the three parameters Gumbel distribu-

tion when the sample size for normally distributed data is increased. The figure

illustrates that as sample size for normal data increases, the three parameters

Gumbel distribution is kind of similar to the normal distribution. The displayed

graphs shows that for a small sample size(n=1000) there is a big variation on

the values of a three parameters Gumbel distribution and the normal distribution

since the location, dispersion and shape parameters of the graphs indicates no

similarity. As the sample size becomes large (n = 1,000,000), the three parameter

Gumbel distribution approaches the normal distribution and it can be observed

that the spread and shape parameters are almost same with a small difference on

the location parameter. Therefore, the three parameters Gumbel distribution is

recommended for analyzing and/or modeling the large sample sized normal data

sets.

Further, it can be observed from the figure that as the sample size becomes large,

the mean of the three parameters Gumbel distribution becomes closer to the mean

of the normal distribution as required by the Central Limit Theorem.
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Figure 4.8: Asymptotic distributions for three parameters Gumbel and normal
distributions

Relationship between a three parameters Gumbel distribution and Chi-

square distribution

Chi-square is a right skewed distribution and therefore, we are investigating if a

three parameters Gumbel distribution can also be used to fit skewed data sets by
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studying its relationship with skewed distribution (Chi-square distribution), for

samples of size 100, 10000, 100000, and 1000000.

Figure 4.9 shows the behaviour of the three parameters Gumbel distribution and

chi-square distribution when the sample size for skewed data is increased.The dis-

played graphs shows that for a small sample size(n=100) there no similarity in

terms of the shape, spread and the mean of a three parameters Gumbel distri-

bution and the chi-square distribution. As the sample size becomes large (n =

1,000,000) for the skewed data sets, a three parameter Gumbel distribution is

almost same as the chi-square distribution. This is supported by the clear ob-

servation showing similarity on the spread and shape of the distributions with

a small difference on the location/mean of the distributions. This implies that

as the sample approaches infinity, three parameters Gumbel distribution becomes

similar to chi-square distribution, hence, a three parameters Gumbel distribution

is also useful in modeling and/or analyzing the large sample sized skewed data

sets.
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Figure 4.9: Asymptotic distributions for three parameters Gumbel and chi-square
distributions

Relationship between a three parameters Gumbel distribution andWeibull

distribution

Weibull distribution is known for analyzing and/or modeling the extreme events.

We are therefore interested on investigating if a three parameters Gumbel distri-
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bution can also be used to analyze/model the extreme data sets. This was by

studying the relationship between a three parameters Gumbel distribution with

Weibull distribution (for samples of size 100, 10000, 100000, and 1000000).

Figure 4.10 below, shows the behaviour of a three parameters Gumbel distribution

and Weibull distribution when the sample size for extreme data is increased.The

graphical results shows that for a small sample size(n=100) there no similarity

in terms of the shape, spread and the mean of a three parameters Gumbel dis-

tribution and the Weibull distribution. As the sample size becomes large (n =

1,000,000) for the extreme data sets, the three parameter Gumbel distribution is

almost same as the Weibull distribution. This is supported by the clear observa-

tion showing similarity on the spread and shape of the distributions with a small

difference on the location of the distributions. This implies that as the sample

approaches infinity, a three parameters Gumbel distribution becomes similar to

Weibull distribution, hence, three parameters Gumbel distribution is also useful

in modeling and/or analyzing the large sample sized extreme data sets.

In general, this chapter therefore, concludes from the asymptotic properties

discussed that a three parameters Gumbel distribution provides unbiased, effi-

cient and consistent estimates as the sample size gets large (approaches infinity).

The chapter further demonstrates that a three parameters Gumbel distribution is

flexible for fitting normal data, skewed data and extreme data sets with provision

of unbiased and efficient estimators( an advantage that majority of the distribu-

tions cannot achieve).
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Figure 4.10: Asymptotic distributions for three parameters Gumbel and Weibull
distributions

4.4 Application and Efficiency

This section investigates the efficiency of a three parameters Gumbel distribution

using Mean Square Error (MSE) and/or Akaike’s Information Criterion (AIC) by

applying simulated and real data . In subsection (4.4.1), we investigate the effi-
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ciency using three different types of simulated data sets and in subsection (4.4.2)

we examined the efficiency by applying real life data sets to compare the three

parameters Gumbel distribution with other existing distributions like the two pa-

rameters Gumbel distribution, exponentiated Gumbel distribution, Gumbel ge-

ometric distribution, two parameters Weibull distribution and three parameters

Frechet distribution.

4.4.1 Efficiency using simulated data

In this subsection, we ascertain the type of data in which a three parameter

Gumbel distribution is more efficient in terms of application. Three different types

of simulated data sets, that is, normal data which was simulated using the normal

distribution, extreme data simulated using Weibull distribution and skewed data

simulated using chi-square distribution are applied in this section to investigate

the efficiency using Akaike’s Information Criterion. These three types of data are

simulated for different sample sizes (that is, for sample sizes of 100, 1000, 10000,

100000 and 1000000). The data sets were fitted using three parameters Gumbel

distribution and the AIC values obtained for the different types of data at different

sample sizes are as given in Table 4.8.

Table 4.8: AIC values for simulated data

Sample size Normal Skewed Extreme
n = 100 434.5441 490.9186 153.5914
n = 1000 4408.551 4870.835 1549.833
n = 10,000 43180.57 48350.63 14917.24
n = 100,000 433335.1 486704.6 151138.3
n = 1,000,000 4331444 4863754 1506155

From subsection (4.3.5), it was concluded that as the sample size becomes large,

the formulated three parameters Gumbel distribution approaches the normal dis-

tribution, chi-square distribution and Weibull distribution for normal, skewed and

extreme data respectively. This further showed that the formulated three param-

eters Gumbel distribution is flexible for fitting the normal, skewed and extreme

data sets. From Table 4.8, we can observe that the extreme value data sets yielded
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smaller AIC value, followed by the normal data sets and lastly, the skewed data

sets. This indicates that the three parameters Gumbel distribution is superior

for fitting extreme data, normal data and lastly skewed data. Making it more

superior for modeling extreme data than other sets of data, hence it is in line with

the improved mother distribution which was for analyzing the extreme data sets.

This section therefore, concludes that as much as three parameters Gumbel dis-

tribution fits extreme, skewed and normal data, it is best for fitting extreme data,

followed by normal data and lastly skewed data.

4.4.2 Efficiency Analysis using real data

In this subsection, three different types real life data sets namely Earthquake mag-

nitude (data 1), average Avocado prices (data 2) and Income expectation (data 3)

were used to investigate the efficiency of a three parameter Gumbel distribution

in comparison to other existing distributions (the two parameters Gumbel distri-

bution, exponentiated Gumbel distribution, Gumbel geometric distribution, two

parameters Weibull distribution and three parameters Frechet distribution). The

data was downloaded from www.kaggle.com.

Data 1: Earthquake magnitude

The earthquake magnitude data measured on Moment Magnitude Scale (MMS)

was collected from 1995 - 2023 and comprise of 1000 observations.

Table 4.9: Summary statistics for Earthquake magnitude

Statistic Value
Mean 6.9402

Standard deviation 0.4381
Median 6.8
Mode 6.5

Minimum 6.5
Maximum 9.1

From Table 4.9, the minimum magnitude value is 6.5 with a maximum value

of 9.1. The summary statistics reports that the mean of the 1000 observations is
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6.9402 with a standard deviation of 0.4381. This data was further fitted using six

different distribution including the new three parameter Gumbel distribution for

the purpose of determining the most efficient distribution for application in data

modeling and parameter estimation. The AIC results is applied to determine the

best distribution for fitting the earthquake magnitude data and the results are as

shown in Table 4.10.

Table 4.10: AIC values for Earthquake magnitude

Distribution AIC value
Exponentiated Gumbel 3115.843
Three parameter Gumbel 794.5079
Two parameter Gumbel 832.3538

Gumbel geometric 974.5083
Three parameter Frechet 1165.169
Two parameter Weibull 1589.9

The results provided in Table 4.10 shows that three parameter Gumbel dis-

tribution is best distribution for fitting the earthquake magnitude data because

it is having the smallest AIC value of 794.5079. The second best distribution is

the Gumbel geometric distribution with an AIC value of 794.5083, followed by the

two parameters Gumbel distribution which gave the AIC value of 832.3538. Three

parameter Frechet distribution, two parameter Weibull distribution and Exponen-

tiated Gumbel distribution gave the largest AIC statistic of 1165.169, 1589.9 and

3115.843 respectively, implying that they are not best for fitting the earthquake

magnitude data.

For the purpose of uniformity, we investigate the efficiency using the three pa-

rameter distributions (that is, three parameters Gumbel, Exponentiated Gumbel,

Gumbel geometric and three parameter Frechet) using MSE results. This is be-

cause variability determines efficiency in that an estimator is said to more efficient

than another estimator, that is if it is more precise and reliable for the same sam-

ple size. Also, based on Cramer-Rao Inequality, when there are several unbiased

estimators of the same parameter, then the one with least variance is the more
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efficient.

Table 4.11: Estimates and MSE for earthquake magnitude

Distribution Parameter Estimate MSE
Exponentiated Gumbel Location 7.5798 0.0562

Scale 0.8604 0.0291
Shape 5.5640 0.5076

Three parameter Gumbel Location 6.9820 0.0481
Scale 0.3783 0.0219
Shape 0.2841 0.0617

Two parameter Gumbel Location 6.7522 0.0497
Scale 0.2933 0.0278

Gumbel geometric Location 6.9824 0.0482
Scale 0.3783 0.0219
Shape 0.7165 0.0619

Three parameter Frechet Location 7.0215 1.1367
Scale 7.8344 0.1233
Shape 6.9246 0.3530

Two parameter Weibull Scale 7.1613 0.0483
Shape 13.1882 0.2720

The three parameters (location, scale and shape) are estimated using four

different distributions. By applying the Cramer-Rao approach on the location pa-

rameter, it can be observed from Table 4.11 that three parameter Gumbel give the

least MSE value of 0.0481, followed by Gumbel geometric which yield a MSE value

of 0.0482, then exponentiated Gumbel with MSE of 0.0562 and lastly, the three

parameters Frechet with MSE value of 1.1367. This demonstrates that the three

parameter Gumbel gives the most efficient estimate for the location parameter.

This is further supported by the closeness of the estimated value for the location

parameter (6.9820) using three parameter Gumbel distribution to the mean value

of the data (6.9402) obtained from Table 4.9.

For the scale parameter, both three parameter Gumbel distribution and Gumbel

geometric distribution provided the MSE value of 0.0219, followed by exponenti-

ated Gumbel with MSE of 0.0291 and lastly, three parameters Frechet with MSE

of 0.1233. This indicates that both three parameter Gumbel and Gumbel geomet-

ric provide efficient estimate for scale parameter. But the three parameter Gumbel

distribution is more flexible than the Gumbel geometric due to the fact that three
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parameters Gumbel had smaller AIC value than Gumbel geometric distribution

as evidence in Table 4.10.

Lastly, the shape parameter results from Table 4.11 indicates that three parameter

Gumbel distribution gives the least MSE value of 0.0617, followed by the Gumbel

geometric distribution with MSE value of 0.0619, then three parameter Frechet

with MSE static of 0.3530 and the exponentiated Gumbel with the highest MSE

statistic of 0.5076. This results together with the AIC results from Table 4.10

demonstrates that three parameters Gumbel distribution is the best and provide

efficient estimate for the shape parameter.

The data was also fitted by graphical analysis as shown in Figure 4.11. The prob-

ability distribution functions for the six distribution (a three parameter Gumbel,

exponentiated Gumbel, Gumbel distribution, Gumbel geometric, three parameter

Frechet and two parameter Weibull) was fitted to the earthquake magnitude data.

A probability density function is defined as a mathematical function that demon-

strates a continuous probability distribution. It indicates the probability density

of each value of a variable, which can be greater than one but cannot be non nega-

tive. In a graph form, a probability density function is always a curve, which may

give a value greater than one for some values of vi, because it is not the value of

f(v) but the area under the curve that represent probability. The total area under

the whole curve is always exactly one for all probability distributions because it is

certain that an observation i will fall somewhere in the variable’s interval/range

(https://www.scribbr.com/statistics/probability-distribution).

The Figure 4.11 showed that three parameter Gumbel distribution is the best

for fitting the earthquake magnitude since it is more closer to the original distri-

bution of the data compared to other distribution. The second best distribution is

the two parameter Gumbel distribution as observed from the figure. On the side,

the two parameters Weibull and Gumbel geometric distributions are not the best

among the listed distribution for fitting this data.

Gumbel geometric provided the second least AIC value for the earthquake mag-
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Figure 4.11: Data 1:Earthquake magnitude

nitude data with a slight difference from the AIC value for the three parameter

Gumbel distribution but graphically it displayed the worst graph for the data.

This could be due to the difference on the efficiency of the shape parameter esti-

mated by Gumbel geometric distribution.

The application of data 1: earthquake magnitude proves that three parameters

Gumbel distribution is the best for fitting this data. This is because the three pa-

rameters Gumbel distribution provides the smallest AIC value with more efficient

estimates for the three parameters namely location, scale and shape and also the

graphical analysis proves that three parameter Gumbel is the best distribution for

fitting this data.
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Data 2: Avocado prices (in dollars)

The average avocado price data is having 53,415 observation which was collect in

USA from 2015 to 2023. The summary statistics given in Table 4.12 shows that

the data have a mean price of 1.4289 dollars with a standard deviation of 0.3931

dollars. The minimum average reported price of avocado in USA is 0.44 dollars

and maximum price of 3.44 dollars.

Table 4.12: Summary staistics for Avocado prices (in dollars)

Statistic value
Mean 1.4289

Standard deviation 0.3931
Median 1.4
Mode 1.26

Minimum value 0.44
Maximum value 3.44

To comment on the best distribution for fitting this data, AIC statistic was

applied to give us the answer to the best distribution and the results are as given

in Table 4.13.

Table 4.13: AIC values for Avocado prices

Distribution AIC value
Exponentiated Gumbel 158199.7
Three parameter Gumbel 48974.15
Two parameter Gumbel 49782.18

Gumbel geometric 48974.16
Three parameter Frechet 49959.13
Two parameter Weibull 53200.5

The results provided in Table 4.13 shows that three parameter Gumbel dis-

tribution is best distribution for fitting the data sets2 because it is having the

smallest AIC value of 48974.15. The second best distribution is the Gumbel ge-

ometric distribution with an AIC value of 48974.16 which is slightly small than

the three parameters Gumbel distribution AIC value. The third best is the three

parameters Frechet distribution which have the AIC value of 49959.13, followed

by two parameter Gumbel distribution with AIC statistic value of 49782.18. The
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two parameter Weibull distribution and Exponentiated Gumbel distribution gave

the largest AIC statistic values of 53200.5 and 158199.7 respectively, indicating

that they are not best for fitting the data (avocado price data).

The study further investigate the efficiency between the three parameter distribu-

tions using MSE and the Cramer-Rao Inequality approach which states that when

there are several unbiased estimators of the same parameter, then the one with

least variance is the more efficient.

Table 4.14: Estimates and MSE for Avocado prices

Distribution Parameter Estimate MSE
Exponentiated Gumbel Location 2.3459 0.0090

Scale 0.9472 0.0040
Shape 9.4421 0.1404

Three parameter Gumbel Location 1.0625 0.0058
Scale 0.2771 0.0017
Shape 2.7583 0.0949

Two parameter Gumbel Location 1.2417 0.0075
Scale 0.3356 0.0021

Gumbel geometric Location 1.0626 0.0058
Scale 0.2770 0.0017
Shape -1.7557 0.0946

Three parameter Frechet Location 1.8309 0.0681
Scale 1.4169 0.0168
Shape 2.3052 0.0214

Two parameter Weibull Scale 1.5774 0.0018
Shape 3.8512 0.1123

By applying the Cramer-Rao approach on the location parameter, it can be ob-

served from Table 4.14 that three parameter Gumbel distribution and the Gumbel

geometric distribution all give the least MSE value of 0.0058, followed by expo-

nentiated Gumbel with MSE of 0.0090 and finally,the three parameters Frechet

with MSE value of 0.0681. This demonstrates that the three parameter Gumbel

distribution gives the most efficient estimate for the location parameter.

Secondly, for the scale parameter, both three parameter Gumbel distribution and

Gumbel geometric distribution provided the MSE value of 0.0017, followed by ex-

ponentiated Gumbel with MSE of 0.0040 and lastly, three parameters Frechet with

MSE of 0.0168. This indicates that both three parameter Gumbel and Gumbel
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geometric provide efficient estimate for scale parameter.

Lastly, the shape parameter results from Table 4.14 indicates that the three pa-

rameter Frechet distribution have the smaller MSE value of 0.0214, followed by

the Gumbel geometric distribution with MSE value of 0.0946 but with a negative

estimate value of -1.7557. The three parameter Gumbel distribution is the third

best with MSE static value of 0.0949 and lastly, the exponentiated Gumbel with

the highest MSE statistic value of 0.1404.

Therefore, the three parameter Gumbel distribution is more flexible than the Gum-

bel geometric distribution and three parameters Frechet distribution due to the

fact that three parameters Gumbel had smaller AIC value than Gumbel geometric

distribution and Frechet distribution as evidence in Table 4.13.

To support the conclusion that the three parameters Gumbel distribution is flexi-

ble for fitting this data, graphical analysis was conducted in support and the result

displayed in Figure 4.12

From Figure 4.12, it can be clearly observed that three parameter Gumbel

distribution, Frechet distribution and the two parameter Gumbel distribution can

fit the data well. And because of the AIC technique, three parameter Gumbel

distribution is termed the best since it had the smallest AIC value.

Also, it can be observed from the graph that the worst distribution for fitting this

data is the Gumbel Geometric distribution. This goes against its AIC value which

emerged to be the second smallest value (from Table 4.13). From the analysis,

the failure on this distribution is due to its shape parameter which seems to be

poorly estimated. For example in the case of this data, the Gumbel geometric

distribution gave a negative estimate to the shape parameter yet the fitted data

are prices which cannot be negative in nature. This disadvantage makes the three

parameter Gumbel distribution more superior and flexible for fitting this data.

The application of data 2: avocado prices demonstrates that three parameters

Gumbel distribution is the best for fitting this data. This is because the three

parameters Gumbel distribution provides the smallest AIC value with more ef-
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Figure 4.12: Data 2: Avocado prices in dollars

ficient estimates for the three parameters and also the graphical analysis proves

that three parameter Gumbel is among the best distributions for fitting this data.

Data 3: Income prediction

The income prediction data was collected from 299,285 USA citizens. The mini-

mum expected income from the USA citizens was 37.87 dollars with a maximum

expected income was 18656.30 dollars per week. The mean value for the data is

1740.10 dollars with standard deviation of 994.1443 dollars. For the purpose of

normality, the data was transformed by taking logarithm. The summary statistics

after transformation showed a mean of 3.1644 dollars with a standard deviation of

88



0.2769. The data was fitted using five distributions namely exponentiated Gumbel

distribution, three parameters Gumbel distribution, two parameters Gumbel dis-

tribution, Gumbel geometric distribution and two parameter Weibull distribution.

The AIC values for the distributions are given in Table 4.15.

Table 4.15: AIC values for Income prediction

Distribution AIC value
Exponentiated Gumbel 1219008
Three parameter Gumbel 569797.1
Two parameter Gumbel 701777.8

Gumbel geometric 569513.5
Two parameter Weibull 552879.8

From Table 4.15, the two parameters Weibull is the best based on AIC result

since it have the smallest AIC value of 552879.8. The second best distribution is

Gumbel geometric distribution with AIC value of 56513.5 and the third best dis-

tribution is the three parameters Gumbel distribution with AIC value of 569797.1.

The results show that exponentiated Gumbel distribution is the worst for fitting

this data with AIC value of 1219008, followed by the two parameters Gumbel with

the AIC statistic value of 701777.8.

A flexible distribution is one which is superior for a given data (one with smaller

AIC values) and with efficient estimators. For the efficiency of the estimators, the

results are given in Table 4.16.

The results for the location parameter from Table 4.16, shows that two param-

eter Gumbel provided the smallest MSE value of 0.0015 meaning its more efficient

for the location parameter, followed by exponentiated Gumbel with MSE value

of 0.0046. The third distribution which provided smaller MSE for the location

parameter is three parameters Gumbel distribution with a value of 0.0096 and

lastly, Gumbel geometric with MSE value of 0.0117.

The efficiency of the scale/dispersion parameter as observed from Table 4.16 shows

that three parameters Gumbel distribution and Gumbel geometric distribution

provide more efficient scale parameter estimate with both having MSE value of

0.0005. The two parameter Weibull and exponentiated Gumbel distributions in-
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Table 4.16: Estimates and MSE for income prediction

Distribution Parameter Estimate MSE
Exponentiated Gumbel Location 8.1134 0.0046

Scale 1.1985 0.0018
Shape 5.0839 0.0297

Three parameter Gumbel Location 4.6480 0.0096
Scale 0.3501 0.0005
Shape 2134.6490 59.1504

Gumbel geometric Location 4.4749 0.0117
Scale 0.3506 0.0005
Shape -3482.2666 114.6687

Two parameter Gumbel Location 6.9465 0.0015
Scale 0.7595 0.0009

Two parameter Weibull Scale 7.5612 0.0010
Shape 13.8270 0.0193

dicate least efficient estimate for scale parameter with two two distributions dis-

playing MSE value of 0.0010 and 0.0018 respectively.

Lastly from Table 4.16, for the shape parameter, two parameters Weibull distribu-

tion and exponentiated Gumbel distribution provides least MSE value of 0.0193

and 0.0297 respectively. The given estimated value for the shape parameter by

the Gumbel geometric distribution is -3482.2666. The negative coefficient indi-

cates that this estimate is meaningless because the predicted income cannot be

negative.

The graphical application is also important on making the decision to the best

distribution for fitting any given data set. For this reason, Figure 4.13 was used

to display how the five distributions looks like when fitted to this data (income

prediction data).

From Figure 4.13, it can be clearly observed that three parameter Gumbel

distribution and the two parameter Weibull distribution can fit the data well

compared to other three distributions . Also, the worst distribution for fitting this

data is the Gumbel Geometric distribution and two parameters Gumbel distribu-

tion. The graphical display of the Gumbel geometric distribution goes against its

AIC value which emerged to be the second smallest value (from Table 4.15). From

the analysis, the failure on this distribution is due to its shape parameter which

90



Figure 4.13: Data3: Income prediction data

seems to be poorly estimated (-3482.2666).

Therefore, from the analysis using data 3: income prediction data, the best dis-

tributions for fitting this data are the three parameters Gumbel distribution and

the two parameters Weibull distribution. This is evidenced from the AIC results,

efficiency test using MSE and the graphical analysis.

In general, this chapter therefore, concludes that three parameters Gumbel dis-

tribution is flexible for modeling or fitting any type of data. The application

results from three data sets (earthquake magnitude data, avocado price data and

income prediction data) demonstrates that this distribution is among the best and

provides efficient estimates.
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CHAPTER FIVE

Summary, Conclusion and Recommendations

This chapter summarizes the analysis based on the objectives to give conclusion

and recommendation from the research. The summary is explained in section

(5.1), conclusion of the research is discussed in section (5.2) and the research

recommendation discussed in section (5.3) respectively.

5.1 Summary

In summary, three parameters Gumbel distribution is a new distribution is a

positively skewed distribution with better parameter estimators and therefore, it

implies that this new distribution can be applied in analyzing extreme data sets as

evidenced from the improved distribution (two parameter Gumbel distribution).

The distribution is also able to analyze normal and skewed data sets but only if

the data sets are very large since from the discussion it is evidenced that as the

sample size approaches infinity, the Gumbel distribution becomes similar to the

normal and chi square distributions. This is one of the superior achievement that

the new three Gumbel distribution have made.

5.2 Conclusion

A positively skewed three parameters Gumbel distribution provided unbiased esti-

mators under the property of asymptotic bias. The distribution further shows that

its estimators are more efficient and more consistent as the sample size becomes

bigger (approaching infinity).
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Flexibility of a three-parameters Gumbel distribution: From the simulated

data, a three parameters Gumbel distribution demonstrates that it is flexible for

modeling or fitting any type of data, including normal, skewed, and extreme data

sets, and provides more efficient and consistent estimates for these data sets as the

sample size approaches infinity. On the same, it was found that three-parameters

Gumbel distribution is best for fitting the extreme data, followed normal data and

lastly, skewed data.

Bias and Efficiency: The new three parameters Gumbel distribution provided

unbiased estimators under the property of asymptotic bias. The distribution fur-

ther shows that its estimators are more efficient and more consistent as the sample

size becomes larger (approaching infinity).

Consistency and MSE: As the sample size of any data sets becomes large, three

parameter Gumbel distribution provides more reliable and precise estimators with

their standard errors tending to zero.

Comparison with other distributions: By applying real life data (earthquake

magnitude data and avocado prices data), a three parameters Gumbel distribution

is found to be more flexible than the original two parameters Gumbel distribution

and other distributions like exponentiated Gumbel, three parameters Frechet, two

parameters Weibull and Gumbel geometric. This is evidenced by small Akaike’s

Information Criterion values and more efficient estimators when compared with

these distribution.

5.3 Recommendation

This research made the following specific and future research recommendations

which are significant for guiding future researchers on the application, modeling

and parameter estimation:

Specific Recommendations

1. Three parameter Gumbel distribution is more flexible and is recommended

for future analysis since it will provide unbiased, more efficient and consistent
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estimators especially for large sample sized data sets.

2. Three parameter Gumbel distribution can be applied to the analysis of both

extreme data, normal data and skewed data sets and is best in all the data

cases (extreme, normal and skewed) when the sample size is approaching

infinity

Recommendation for further research

1. The graphical analysis shows that location parameter of a three parameter

Gumbel distribution is not that close to the normal, Chi-square or Weibull

location parameters. Therefore, it is recommended that a future research

can me done to modify the location parameter of a three parameters Gumbel

distribution to make it more efficient.

2. Future researchers to apply other parameter estimation methods like Min-

imum Distance Estimation, Bayesian Estimation, Method of Moments and

Least Square Estimation to investigate if any of the above stated meth-

ods can provide better estimates for a three parameter Gumbel distribution

than the applied method of Maximum Likelihood Estimation. This future

research can help in improving the level of efficiency of the parameter esti-

mation using a three parameter Gumbel distribution

3. Researchers to study some characteristics of a three parameter Gumbel dis-

tribution like quartile deviation, order statistics and characteristic function.

4. To examine the efficiency of the estimators of a three parameter Gumbel dis-

tribution and estimators of well known distributions like normal, exponential

among others.
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Appendix

R-codes

Simulation using a three-parameter Gumbel distribution

gumbel.three¡-function(n,location,scale1,shape){
u=runif(n,0,1)
x1=(u*(1-shape))-1
x2=(u*(1-shape))*(1+exp(-exp(location/scale1)))-u-exp(-exp(location/scale1))
x3=log(x1/x2)
x=-location-(scale1*log(x3))
return(x)
}
x¡-gumbel.three(1000,4,5,10)
hist(x,col = ”orange”)

Normal data sets

set.seed(100)
library(bbmle)
#Normal Sample size 100
x=rnorm(100,5,2)
gambel.three.link¡-function(delta, omega, tau){
n=length(x)
k=(-(x-omega)/tau)
f1=(n*log(delta))-(n*log(tau))
f2=sum(k-exp(k))
f3=2*sum(log(1-((1-delta)*(1-exp(-exp(k))+exp(-exp(omega/tau))))))
gambel.link=f1+f2-f3
return(-gambel.link)
}

fitn1< −stats4::mle(gambel.three.link,start=list(delta=1, omega=1, tau=1),
method=”Nelder-Mead”)
stats4::summary(fitn1)
stats4::vcov(fitn1)
stats4::confint(fitn1)
cov2cor(vcov(fitn1))
stats4::AIC(fitn1)

prob.fun1< −function(x,omega=coef(fitn1)[’omega’],delta=coef(fitn1)[’delta’],
tau=coef(fitn1)[’tau’]){
k=-((x-omega)/tau)
num=(delta/tau)*exp(k-exp(k))
denom=(1− ((1− delta) ∗ (1 + exp(−exp(omega/tau))− exp(−exp(k)))))2
p=num/denom
return(p)
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}

dx< −density(x)
plot(x,prob.fun1(x), type=”n”,ylim=c(0,0.23), ylab=”Probability”,
main=”Density Plot (Sample Size 100)”)
#Fit a smooth spline to the data
fit2 < − smooth.spline(x, prob.fun1(x))
#Add the smooth curve to the plot
lines(dx, lwd = 4, col = ”red”)
lines(fit2, col = ”blue”, lwd = 4)
legend(”topleft”, legend = c(”Three Parameter Gumbel”, ”Original Normal Dis-
tribution”),
col =c(”blue”,”red”), lwd = 4, bty = ”n”)

#Normal Sample size 1000
x=rnorm(1000,5,2)
gambel.three.link¡-function(delta, omega, tau){
n=length(x)
k=(-(x-omega)/tau)
f1=(n*log(delta))-(n*log(tau))
f2=sum(k-exp(k))
f3=2*sum(log(1-((1-delta)*(1-exp(-exp(k))+exp(-exp(omega/tau))))))
gambel.link=f1+f2-f3
return(-gambel.link)
}

fit< −stats4::mle(gambel.three.link,start=list(delta=1, omega=1, tau=1),
method=”Nelder-Mead”)
summary(fit)
vcov(fit)
confint(fit)
cov2cor(vcov(fit))
stats4::AIC(fit)

prob.fun< −function(x,omega=coef(fit)[’omega’],delta=coef(fit)[’delta’],
tau=coef(fit)[’tau’]){
k=-((x-omega)/tau)
num=(delta/tau)*exp(k-exp(k))
denom=(1− ((1− delta) ∗ (1 + exp(−exp(omega/tau))− exp(−exp(k)))))2
p=num/denom
return(p)
}

dx< −density(x)
plot(x,prob.fun(x), type=”n”,ylim=c(0,0.23), ylab=”Probability”,
main=”Density Plot (Sample Size 1000)”)
#Fit a smooth spline to the data
fit2 < − smooth.spline(x, prob.fun(x))
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#Add the smooth curve to the plot
lines(dx, lwd = 4, col = ”red”)
lines(fit2, col = ”blue”, lwd = 4)
legend(”topleft”,
legend = c(”Three Parameter Gumbel”, ”Original Normal Distribution”),
col =c(”blue”,”red”), lwd = 4, bty = ”n”)

#Normal Sample size 10000
x=rnorm(10000,5,2)
gambel.three.link¡-function(delta, omega, tau){
n=length(x)
k=(-(x-omega)/tau)
f1=(n*log(delta))-(n*log(tau))
f2=sum(k-exp(k))
f3=2*sum(log(1-((1-delta)*(1-exp(-exp(k))+exp(-exp(omega/tau))))))
gambel.link=f1+f2-f3
return(-gambel.link)
}

fit<-stats4::mle(gambel.three.link,start=list(delta=1, omega=1, tau=1),
method=”Nelder-Mead”)
summary(fit)
vcov(fit)
confint(fit)
cov2cor(vcov(fit))
stats4::AIC(fit)

prob.fun< −function(x,omega=coef(fit)[’omega’],delta=coef(fit)[’delta’],
tau=coef(fit)[’tau’]){
k=-((x-omega)/tau)
num=(delta/tau)*exp(k-exp(k))
denom= (1− ((1− delta) ∗ (1 + exp(−exp(omega/tau))− exp(−exp(k)))))2
p=num/denom
return(p)
}

dx< −density(x)
plot(x,prob.fun(x), type=”n”,ylim=c(0,0.23), ylab=”Probability”,
main=”Density Plot (Sample Size 10000)”)
# Fit a smooth spline to the data
fit2 < − smooth.spline(x, prob.fun(x))
# Add the smooth curve to the plot
lines(dx, lwd = 4, col = ”red”)
lines(fit2, col = ”blue”, lwd = 4)
legend(”topleft”, legend = c(”Three Parameter Gumbel”, ”Original Normal Dis-
tribution”),
col =c(”blue”,”red”), lwd = 4, bty = ”n”)
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#Normal Sample size 100000
x=rnorm(100000,5,2)
gambel.three.link¡-function(delta, omega, tau){
n=length(x)
k=(-(x-omega)/tau)
f1=(n*log(delta))-(n*log(tau))
f2=sum(k-exp(k))
f3=2*sum(log(1-((1-delta)*(1-exp(-exp(k))+exp(-exp(omega/tau))))))
gambel.link=f1+f2-f3
return(-gambel.link)
}

fit< −stats4::mle(gambel.three.link,start=list(delta=1, omega=1, tau=1),
method=”Nelder-Mead”)
summary(fit)
vcov(fit)
confint(fit)
cov2cor(vcov(fit))
stats4::AIC(fit)

prob.fun¡-function(x,omega=coef(fit)[’omega’],delta=coef(fit)[’delta’],
tau=coef(fit)[’tau’]){
k=-((x-omega)/tau)
num=(delta/tau)*exp(k-exp(k))
denom=(1− ((1− delta) ∗ (1 + exp(−exp(omega/tau))− exp(−exp(k)))))2
p=num/denom
return(p)
}

dx< −density(x)
plot(x,prob.fun(x), type=”n”,ylim=c(0,0.23), ylab=”Probability”,
main=”Density Plot (Sample Size 100000)”)
# Fit a smooth spline to the data
fit2 < − smooth.spline(x, prob.fun(x))
# Add the smooth curve to the plot
lines(dx, lwd = 4, col = ”red”)
lines(fit2, col = ”blue”, lwd = 4)
legend(”topleft”,
legend = c(”Three Parameter Gumbel”, ”Original Normal Distribution”),
col =c(”blue”,”red”), lwd = 4, bty = ”n”)

#Normal Sample size 1000000
x=rnorm(1000000,5,2)
gambel.three.link¡-function(delta, omega, tau){
n=length(x)
k=(-(x-omega)/tau)
f1=(n*log(delta))-(n*log(tau))
f2=sum(k-exp(k))
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f3=2*sum(log(1-((1-delta)*(1-exp(-exp(k))+exp(-exp(omega/tau))))))
gambel.link=f1+f2-f3
return(-gambel.link)
}

fit< −stats4::mle(gambel.three.link,start=list(delta=1, omega=1, tau=1),
method=”Nelder-Mead”)
summary(fit)
vcov(fit)
confint(fit)
cov2cor(vcov(fit))
stats4::AIC(fit)

prob.fun< −function(x,omega=coef(fit)[’omega’],delta=coef(fit)[’delta’],
tau=coef(fit)[’tau’]){
k=-((x-omega)/tau)
num=(delta/tau)*exp(k-exp(k))
denom=(1− ((1− delta) ∗ (1 + exp(−exp(omega/tau))− exp(−exp(k)))))2
p=num/denom
return(p)
}

dx< −density(x)
plot(x,prob.fun(x), type=”n”,ylim=c(0,0.23), ylab=”Probability”,
main=”Density Plot (Sample Size 1000000)”)
# Fit a smooth spline to the data
fit2 < − smooth.spline(x, prob.fun(x))
# Add the smooth curve to the plot
lines(dx, lwd = 4, col = ”red”)
lines(fit2, col = ”blue”, lwd = 4)
legend(”topleft”,
legend = c(”Three Parameter Gumbel”, ”Original Normal Distribution”),
col =c(”blue”,”red”), lwd = 4, bty = ”n”)

Skewed data sets

#Chisquare
set.seed(100)
#sample size 100
x=rchisq(100,5)
gambel.three.link¡-function(delta, omega, tau){
n=length(x)
k=(-(x-omega)/tau
) f1=(n*log(delta))-(n*log(tau))
f2=sum(k-exp(k))
f3=2*sum(log(1-((1-delta)*(1-exp(-exp(k))+exp(-exp(omega/tau))))))
gambel.link=f1+f2-f3
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return(-gambel.link)
}

fit< −stats4::mle(gambel.three.link,start=list(delta=1, omega=1, tau=1),
method=”Nelder-Mead”)
summary(fit)
vcov(fit)
confint(fit)
cov2cor(vcov(fit))
stats4::AIC(fit)

prob.fun< −function(x,omega=coef(fit)[’omega’],delta=coef(fit)[’delta’],
tau=coef(fit)[’tau’]){
k=-((x-omega)/tau)
num=(delta/tau)*exp(k-exp(k))
denom=(1− ((1− delta) ∗ (1 + exp(−exp(omega/tau))− exp(−exp(k)))))2
p=num/denom
return(p)
}

dx< −density(x)
plot(x,prob.fun(x), type=”n”,ylim=c(0,0.23), ylab=”Probability”,
main=”Density Plot (Sample Size 100)”)
# Fit a smooth spline to the data
fit2 < − smooth.spline(x, prob.fun(x))
# Add the smooth curve to the plot
lines(dx, lwd = 4, col = ”darkgreen”)
lines(fit2, col = ”orange”, lwd = 4)
legend(”topleft”,
legend = c(”Three Parameter Gumbel”, ”Original Chisquare Distribution”),
col =c(”orange”,”darkgreen”), lwd = 4, bty = ”n”)

#sample size 1000
x=rchisq(1000,5)
gambel.three.link¡-function(delta, omega, tau){
n=length(x)
k=(-(x-omega)/tau)
f1=(n*log(delta))-(n*log(tau))
f2=sum(k-exp(k))
f3=2*sum(log(1-((1-delta)*(1-exp(-exp(k))+exp(-exp(omega/tau))))))
gambel.link=f1+f2-f3
return(-gambel.link)
}

fit< −stats4::mle(gambel.three.link,start=list(delta=1, omega=1, tau=1),
method=”Nelder-Mead”)
summary(fit)
vcov(fit)
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confint(fit)
cov2cor(vcov(fit))
stats4::AIC(fit)

prob.fun< −function(x,omega=coef(fit)[’omega’],delta=coef(fit)[’delta’],
tau=coef(fit)[’tau’]){
k=-((x-omega)/tau)
num=(delta/tau)*exp(k-exp(k))
denom=(1− ((1− delta) ∗ (1 + exp(−exp(omega/tau))− exp(−exp(k)))))2
p=num/denom
return(p)
}

dx< −density(x)
plot(x,prob.fun(x), type=”n”,ylim=c(0,0.23), ylab=”Probability”,
main=”Density Plot (Sample Size 1000)”)
# Fit a smooth spline to the data
fit2 < − smooth.spline(x, prob.fun(x))
# Add the smooth curve to the plot
lines(dx, lwd = 4, col = ”darkgreen”)
lines(fit2, col = ”orange”, lwd = 4)
legend(”topleft”,
legend = c(”Three Parameter Gumbel”, ”Original Chisquare Distribution”),
col =c(”orange”,”darkgreen”), lwd = 4, bty = ”n”)

#sample size 10000
x=rchisq(10000,5)
gambel.three.link¡-function(delta, omega, tau){
n=length(x)
k=(-(x-omega)/tau)
f1=(n*log(delta))-(n*log(tau))
f2=sum(k-exp(k))
f3=2*sum(log(1-((1-delta)*(1-exp(-exp(k))+exp(-exp(omega/tau))))))
gambel.link=f1+f2-f3
return(-gambel.link)
}

fit< −stats4::mle(gambel.three.link,start=list(delta=1, omega=1, tau=1),
method=”Nelder-Mead”)
summary(fit)
vcov(fit)
confint(fit)
cov2cor(vcov(fit))
stats4::AIC(fit)

prob.fun< −function(x,omega=coef(fit)[’omega’],delta=coef(fit)[’delta’],
tau=coef(fit)[’tau’]){
k=-((x-omega)/tau)

104



num=(delta/tau)*exp(k-exp(k))
denom=(1− ((1− delta) ∗ (1 + exp(−exp(omega/tau))− exp(−exp(k)))))2
p=num/denom
return(p)
}

dx< −density(x)
plot(x,prob.fun(x), type=”n”,ylim=c(0,0.23), ylab=”Probability”,
main=”Density Plot (Sample Size 10000)”)
# Fit a smooth spline to the data
fit2 < − smooth.spline(x, prob.fun(x))
# Add the smooth curve to the plot
lines(dx, lwd = 4, col = ”darkgreen”)
lines(fit2, col = ”orange”, lwd = 4)
legend(”topleft”,
legend = c(”Three Parameter Gumbel”, ”Original Chisquare Distribution”),
col =c(”orange”,”darkgreen”), lwd = 4, bty = ”n”)

#sample size 100000
x=rchisq(100000,5)
gambel.three.link¡-function(delta, omega, tau){
n=length(x)
k=(-(x-omega)/tau)
f1=(n*log(delta))-(n*log(tau))
f2=sum(k-exp(k))
f3=2*sum(log(1-((1-delta)*(1-exp(-exp(k))+exp(-exp(omega/tau))))))
gambel.link=f1+f2-f3
return(-gambel.link)
}

fit< −stats4::mle(gambel.three.link,start=list(delta=1, omega=1, tau=1),
method=”Nelder-Mead”)
summary(fit)
vcov(fit)
confint(fit)
cov2cor(vcov(fit))
stats4::AIC(fit)

prob.fun< −function(x,omega=coef(fit)[’omega’],delta=coef(fit)[’delta’],
tau=coef(fit)[’tau’]){
k=-((x-omega)/tau)
num=(delta/tau)*exp(k-exp(k))
denom=(1− ((1− delta) ∗ (1 + exp(−exp(omega/tau))− exp(−exp(k)))))2
p=num/denom
return(p)
}

dx< −density(x)
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plot(x,prob.fun(x), type=”n”,ylim=c(0,0.23), ylab=”Probability”,
main=”Density Plot (Sample Size 100000)”)
# Fit a smooth spline to the data
fit2 < − smooth.spline(x, prob.fun(x))
# Add the smooth curve to the plot
lines(dx, lwd = 4, col = ”darkgreen”)
lines(fit2, col = ”orange”, lwd = 4)
legend(”topleft”,
legend = c(”Three Parameter Gumbel”, ”Original Chisquare Distribution”),
col =c(”orange”,”darkgreen”), lwd = 4, bty = ”n”)

#sample size 1000000
x=rchisq(1000000,5)
gambel.three.link¡-function(delta, omega, tau){
n=length(x)
k=(-(x-omega)/tau)
f1=(n*log(delta))-(n*log(tau))
f2=sum(k-exp(k))
f3=2*sum(log(1-((1-delta)*(1-exp(-exp(k))+exp(-exp(omega/tau))))))
gambel.link=f1+f2-f3
return(-gambel.link)
}

fit< −stats4::mle(gambel.three.link,start=list(delta=1, omega=1, tau=1),
method=”Nelder-Mead”)
summary(fit)
vcov(fit)
confint(fit)
cov2cor(vcov(fit))
stats4::AIC(fit)

prob.fun< −function(x,omega=coef(fit)[’omega’],delta=coef(fit)[’delta’],
tau=coef(fit)[’tau’]){
k=-((x-omega)/tau)
num=(delta/tau)*exp(k-exp(k))
denom=(1− ((1− delta) ∗ (1 + exp(−exp(omega/tau))− exp(−exp(k)))))2
p=num/denom
return(p)
}

dx< −density(x)
plot(x,prob.fun(x), type=”n”,ylim=c(0,0.23), ylab=”Probability”,
main=”Density Plot (Sample Size 1000000)”)
# Fit a smooth spline to the data
fit2 < − smooth.spline(x, prob.fun(x))
# Add the smooth curve to the plot
lines(dx, lwd = 4, col = ”darkgreen”)
lines(fit2, col = ”orange”, lwd = 4)
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legend(”topleft”,
legend = c(”Three Parameter Gumbel”, ”Original Chisquare Distribution”),
col =c(”orange”,”darkgreen”), lwd = 4, bty = ”n”)

Extreme data

#Weibul Distribution
#sample size 100
x=rweibull(100,4,2)
gambel.three.link¡-function(delta, omega, tau){
n=length(x)
k=(-(x-omega)/tau)
f1=(n*log(delta))-(n*log(tau))
f2=sum(k-exp(k))
f3=2*sum(log(1-((1-delta)*(1-exp(-exp(k))+exp(-exp(omega/tau))))))
gambel.link=f1+f2-f3
return(-gambel.link)
}

fit< −stats4::mle(gambel.three.link,start=list(delta=1, omega=1, tau=1),
method=”Nelder-Mead”)
summary(fit)
vcov(fit)
confint(fit)
cov2cor(vcov(fit))
stats4::AIC(fit)

prob.fun< −function(x,omega=coef(fit)[’omega’],delta=coef(fit)[’delta’],
tau=coef(fit)[’tau’]){
k=-((x-omega)/tau)
num=(delta/tau)*exp(k-exp(k))
denom=(1− ((1− delta) ∗ (1 + exp(−exp(omega/tau))− exp(−exp(k)))))2
p=num/denom
return(p)
}

dx< −density(x)
plot(x,prob.fun(x), type=”n”,ylim=c(0,0.9), ylab=”Probability”,
main=”Density Plot (Sample Size 100)”)
# Fit a smooth spline to the data
fit2 < − smooth.spline(x, prob.fun(x))
# Add the smooth curve to the plot
lines(dx, lwd = 4, col = ”brown”)
lines(fit2, col = ”lightgreen”, lwd = 4)
legend(”topleft”,
legend = c(”Three Parameter Gumbel”, ”Original Weibull Distribution”),
col =c(”lightgreen”,”brown”), lwd = 4, bty = ”n”)
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#Weibul Distribution
#sample size 1000
x=rweibull(1000,4,2)
gambel.three.link¡-function(delta, omega, tau){
n=length(x)
k=(-(x-omega)/tau)
f1=(n*log(delta))-(n*log(tau))
f2=sum(k-exp(k))
f3=2*sum(log(1-((1-delta)*(1-exp(-exp(k))+exp(-exp(omega/tau))))))
gambel.link=f1+f2-f3
return(-gambel.link)
}

fit< −stats4::mle(gambel.three.link,start=list(delta=1, omega=1, tau=1),
method=”Nelder-Mead”)
summary(fit)
vcov(fit)
confint(fit)
cov2cor(vcov(fit))
stats4::AIC(fit)

prob.fun< −function(x,omega=coef(fit)[’omega’],delta=coef(fit)[’delta’],
tau=coef(fit)[’tau’]){
k=-((x-omega)/tau)
num=(delta/tau)*exp(k-exp(k))
denom=(1− ((1− delta) ∗ (1 + exp(−exp(omega/tau))− exp(−exp(k)))))2
p=num/denom
return(p)
}

dx< −density(x)
plot(x,prob.fun(x), type=”n”,ylim=c(0,0.9), ylab=”Probability”,
main=”Density Plot (Sample Size 1000)”)
# Fit a smooth spline to the data
fit2 < − smooth.spline(x, prob.fun(x))
# Add the smooth curve to the plot
lines(dx, lwd = 4, col = ”brown”)
lines(fit2, col = ”lightgreen”, lwd = 4)
legend(”topleft”,
legend = c(”Three Parameter Gumbel”, ”Original Weibull Distribution”),
col =c(”lightgreen”,”brown”), lwd = 4, bty = ”n”)

#Weibul Distribution
#sample size 10000
x=rweibull(10000,4,2)
gambel.three.link¡-function(delta, omega, tau){
n=length(x)
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k=(-(x-omega)/tau)
f1=(n*log(delta))-(n*log(tau))
f2=sum(k-exp(k))
f3=2*sum(log(1-((1-delta)*(1-exp(-exp(k))+exp(-exp(omega/tau))))))
gambel.link=f1+f2-f3
return(-gambel.link)
}

fit< −stats4::mle(gambel.three.link,start=list(delta=1, omega=1, tau=1),
method=”Nelder-Mead”)
summary(fit)
vcov(fit)
confint(fit)
cov2cor(vcov(fit))
stats4::AIC(fit)

prob.fun< −function(x,omega=coef(fit)[’omega’],delta=coef(fit)[’delta’],
tau=coef(fit)[’tau’]){
k=-((x-omega)/tau)
num=(delta/tau)*exp(k-exp(k))
denom=(1− ((1− delta) ∗ (1 + exp(−exp(omega/tau))− exp(−exp(k)))))2
p=num/denom
return(p)
}

dx< −density(x)
plot(x,prob.fun(x), type=”n”,ylim=c(0,0.9), ylab=”Probability”,
main=”Density Plot (Sample Size 10000)”)
# Fit a smooth spline to the data
fit2 < − smooth.spline(x, prob.fun(x))
# Add the smooth curve to the plot
lines(dx, lwd = 4, col = ”brown”)
lines(fit2, col = ”lightgreen”, lwd = 4)
legend(”topleft”,
legend = c(”Three Parameter Gumbel”, ”Original Weibull Distribution”),
col =c(”lightgreen”,”brown”), lwd = 4, bty = ”n”)

#Weibul Distribution
#sample size 100000
x=rweibull(100000,4,2)
gambel.three.link¡-function(delta, omega, tau){
n=length(x)
k=(-(x-omega)/tau)
f1=(n*log(delta))-(n*log(tau))
f2=sum(k-exp(k))
f3=2*sum(log(1-((1-delta)*(1-exp(-exp(k))+exp(-exp(omega/tau))))))
gambel.link=f1+f2-f3
return(-gambel.link)

109



}

fit¡-stats4::mle(gambel.three.link,start=list(delta=1, omega=1, tau=1),
method=”Nelder-Mead”)
summary(fit)
vcov(fit)
confint(fit)
cov2cor(vcov(fit))
stats4::AIC(fit)

prob.fun< −function(x,omega=coef(fit)[’omega’],delta=coef(fit)[’delta’],
tau=coef(fit)[’tau’]){
k=-((x-omega)/tau)
num=(delta/tau)*exp(k-exp(k))
denom=(1− ((1− delta) ∗ (1 + exp(−exp(omega/tau))− exp(−exp(k)))))2
p=num/denom
return(p)
}

dx< −density(x)
plot(x,prob.fun(x), type=”n”,ylim=c(0,0.9), ylab=”Probability”,
main=”Density Plot (Sample Size 100000)”)
# Fit a smooth spline to the data fit2 < − smooth.spline(x, prob.fun(x))
# Add the smooth curve to the plot
lines(dx, lwd = 4, col = ”brown”)
lines(fit2, col = ”lightgreen”, lwd = 4)
legend(”topleft”,
legend = c(”Three Parameter Gumbel”, ”Original Weibull Distribution”),
col =c(”lightgreen”,”brown”), lwd = 4, bty = ”n”)

#Weibul Distribution
#sample size 1000000
x=rweibull(1000000,4,2)
gambel.three.link¡-function(delta, omega, tau){
n=length(x)
k=(-(x-omega)/tau)
f1=(n*log(delta))-(n*log(tau))
f2=sum(k-exp(k))
f3=2*sum(log(1-((1-delta)*(1-exp(-exp(k))+exp(-exp(omega/tau))))))
gambel.link=f1+f2-f3
return(-gambel.link)
}

fit< −stats4::mle(gambel.three.link,start=list(delta=1, omega=1, tau=1),
method=”Nelder-Mead”)
summary(fit) vcov(fit) confint(fit) cov2cor(vcov(fit)) stats4::AIC(fit)

prob.fun< −function(x,omega=coef(fit)[’omega’],delta=coef(fit)[’delta’],
tau=coef(fit)[’tau’]){
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k=-((x-omega)/tau)
num=(delta/tau)*exp(k-exp(k))
denom=(1− ((1− delta) ∗ (1 + exp(−exp(omega/tau))− exp(−exp(k)))))2
p=num/denom
return(p)
}

dx< −density(x)
plot(x,prob.fun(x), type=”n”,ylim=c(0,0.9), ylab=”Probability”,
main=”Density Plot (Sample Size 1000000)”)
# Fit a smooth spline to the data
fit2 < − smooth.spline(x, prob.fun(x))
# Add the smooth curve to the plot
lines(dx, lwd = 4, col = ”brown”)
lines(fit2, col = ”lightgreen”, lwd = 4)
legend(”topleft”,
legend = c(”Three Parameter Gumbel”, ”Original Weibull Distribution”),
col =c(”lightgreen”,”brown”), lwd = 4, bty = ”n”)

Efficiency Analysis

# Exponentiated Gumbel ex.gumbel.link< −function(beta, sigma, mu){
w = length(x)
q = ((x - mu)/sigma)
z1 = (w*log(beta)) - (w*sigma)
z2 = (beta-1)*(sum(log(1-exp(-exp(-q)))))
z3 = (sum(q))
z4 = sum(exp(-q))
ex.gumbel.link1=z1+z2-z3-z4
return(-ex.gumbel.link1)
}
efitn1< −stats4::mle(ex.gumbel.link,start=list(beta=1, sigma=1, mu=1),
method=”Nelder-Mead”)
stats4::summary(efitn1)
stats4::AIC(efitn1)
expgprob.fun1< −function(x,beta=coef(efitn1)[’beta’],
sigma=coef(efitn1)[’sigma’],mu=coef(efitn1)[’mu’]){
k=(-(x-mu)/sigma)
a1=(beta/sigma)*exp(k)*exp(-exp(k))
a2=(1− exp(−exp(k)))(beta− 1)
p=a1*a2
return(p)
}

# Three parameter Gumbel
gambel.three.link< −function(delta, omega, tau){
n=length(x)
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k=(-(x-omega)/tau)
f1=(n*log(delta))-(n*log(tau))
f2=sum(k-exp(k))
f3=2*sum(log(1-((1-delta)*(1-exp(-exp(k))+exp(-exp(omega/tau))))))
gambel.link=f1+f2-f3
return(-gambel.link)
}
g3fitn1< −stats4::mle(gambel.three.link,start=list(delta=1, omega=1, tau=1),
method=”Nelder-Mead”)
stats4::summary(g3fitn1)
stats4::AIC(g3fitn1)
prob.fun1< −function(x,omega=coef(g3fitn1)[’omega’],delta=coef(g3fitn1)[’delta’],
tau=coef(g3fitn1)[’tau’]){
k=-((x-omega)/tau)
num=(delta/tau)*exp(k-exp(k))
denom=(1− ((1− delta) ∗ (1 + exp(−exp(omega/tau))− exp(−exp(k)))))2
p=num/denom
return(p)
}

# Gumbel distribution gumbel1.link< −function(mu1,theta1){
n = length(x)
k=(-(x-mu1)/theta1)
c1= -n*log(theta1)
c2=sum(k-exp(k))
gumbel1.link1=c1+c2
return(-gumbel1.link1)
}
gfitn1< −stats4::mle(gumbel1.link,start=list(mu1=1, theta1=1),
method=”Nelder-Mead”)
stats4::summary(gfitn1)
stats4::AIC(gfitn1)
g2prob.fun1< −function(x,mu1=coef(gfitn1)[’mu1’],
theta1=coef(gfitn1)[’theta1’]){
k=-((x-mu1)/theta1)
a1=1/theta1
a2=exp(k-exp(k))
p=a1*a2
return(p)
}

# Gumbel geometric
gumbelgeo.link< −function(mu2, sigma2, lambda2){
n = length(x)
p=exp(-(x-mu2)/sigma2)
a1=n*log(1-lambda2)
a2=n*log(sigma2)
a3=2*sum(log(1-lambda2+(lambda2*exp(-p))))
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a4=sum(log(p))-sum(p)
gumbelgeo.link1=a1-a2-a3+a4
return(-gumbelgeo.link1)
}
ggfitn1< −stats4::mle(gumbelgeo.link,start=list(mu2=0.5, sigma2=0.5, lambda2=0.5),
method=”Nelder-Mead”)
stats4::summary(ggfitn1)
stats4::AIC(ggfitn1)
ggprob.fun1< −function(x,mu2=coef(ggfitn1)[’mu2’],sigma2=coef(ggfitn1)[’sigma2’],
lambda2=coef(ggfitn1)[’lambda2’]){
k=-((x-mu2)/sigma2)
a1=(1-lambda2)
a2=exp(k-exp(k))
a3=(1− lambda2 + (lambda2 ∗ exp(−exp(k))))( − 2)
p=a1*a2*a3
return(p)
}

# Frechet
fretchet.like< −function(alpha2,beta2,theta2){
n=length(x)
k2=(alpha2/x)beta2

a1=n*(log(beta2)+(beta2*log(alpha2))+(2*log(theta2))-log(1+theta2))
a2=-(beta2+1)*sum(log(x))
a3=-sum(k2)
a4=-3*sum(log(1-exp(-k2)))
a5=-theta2*sum(exp(-k2)/(1-exp(-k2)))
fretchet.like1=a1+a2+a3+a4+a5
return(-fretchet.like1)
}

# Weibull
weibul.like< −function(tau,beta){
n=length(x)
a1=n*log(beta)-(n*beta*log(tau))
a2=(beta-1)*sum(log(x))
a3=sum((x/tau)beta)
weibul.like1=a1+a2-a3
return(-weibul.like1)
}

web2fitn1< −stats4::mle(weibul.like,start=list(tau=2, beta=2)
method=”Nelder-Mead”)
stats4::summary(web2fitn1)
stats4::AIC(web2fitn1)
webprob.fun1< −function(x,beta=coef(web2fitn1)[’beta’],
tau=coef(web2fitn1)[’tau’]){
a1=(beta ∗ (x(beta− 1)))/(taubeta)
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a2=exp(−((x/tau)beta))
p=a1*a2
return(p)
}

dx< −density(x)
plot(x,prob.fun1(x), type=”n”,ylab=”Probability”,
main=”Distribution Plot for Earthquake Magnitude”, xlab=”Earthquake Magni-
tude”)
# Fit a smooth spline to the data
fit1 < − smooth.spline(x, expgprob.fun1(x))
fit2 < − smooth.spline(x, prob.fun1(x))
fit3 < − smooth.spline(x, g2prob.fun1(x))
fit4 < − smooth.spline(x, ggprob.fun1(x))
fit5 < − smooth.spline(x, freprob.fun1(x))
fit6 < − smooth.spline(x, webprob.fun1(x))

# Add the smooth curve to the plot
lines(dx, lwd = 4, col = ”red”)
lines(fit1, col = ”blue”, lwd = 4)
lines(fit2, col = ”green”, lwd = 4)
lines(fit3, col = ”orange”, lwd = 4)
lines(fit4, col = ”purple”, lwd = 4)
lines(fit5, col = ”brown”, lwd = 4)
lines(fit6, col = ”violet”, lwd = 4)

legend(”topright”,
legend = c(”Original Distribution”, ”Exponential Gumbel”,
”Gumbel Three”,”Gumbel Two”,”Geometric Gumbel”,”Frechet”,”Weibull Two”),
col =c(”red”,”blue”,”green”,”orange”,”purple”,”brown”,”violet”),
lwd = 4, bty = ”n”)

dx< −density(x) plot(x,prob.fun1(x), type=”n”,ylab=”Probability”,
main=”Distribution Plot for Average Avocardo Price”,
xlab=”Average Avocardo Price”)
# Fit a smooth spline to the data
fit1 < − smooth.spline(x, expgprob.fun1(x))
fit2 < − smooth.spline(x, prob.fun1(x))
fit3 < − smooth.spline(x, g2prob.fun1(x))
fit4 < − smooth.spline(x, ggprob.fun1(x))
fit5 < − smooth.spline(x, freprob.fun1(x))
fit6 < − smooth.spline(x, webprob.fun1(x))
# Add the smooth curve to the plot
lines(dx, lwd = 4, col = ”red”)
lines(fit1, col = ”blue”, lwd = 4)
lines(fit2, col = ”green”, lwd = 4)
lines(fit3, col = ”orange”, lwd = 4)
lines(fit4, col = ”purple”, lwd = 4)
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lines(fit5, col = ”brown”, lwd = 4)
lines(fit6, col = ”violet”, lwd = 4)

legend(”topright”,
legend = c(”Original Distribution”, ”Exponential Gumbel”,
”Gumbel Three”,”Gumbel Two”,”Geometric Gumbel”,”Frechet”,”Weibull Two”),
col =c(”red”,”blue”,”green”,”orange”,”purple”,”brown”,”violet”),
lwd = 4, bty = ”n”)

dx< −density(x)
plot(x,prob.fun1(x), type=”n”,ylim=c(0,1.3),ylab=”Probability”,
main=”Distribution Plot for Natural Logarithm of Income”,
xlab=”ln(Average Income)”)
# Fit a smooth spline to the data
fit1 < − smooth.spline(x, expgprob.fun1(x))
fit2 < − smooth.spline(x, prob.fun1(x))
fit3 < − smooth.spline(x, g2prob.fun1(x))
fit4 < − smooth.spline(x, ggprob.fun1(x))
fit6 < − smooth.spline(x, webprob.fun1(x))
# Add the smooth curve to the plot
lines(dx, lwd = 4, col = ”red”)
lines(fit1, col = ”blue”, lwd = 4)
lines(fit2, col = ”green”, lwd = 4)
lines(fit3, col = ”orange”, lwd = 4)
lines(fit4, col = ”purple”, lwd = 4)
lines(fit6, col = ”violet”, lwd = 4)

legend(”topleft”,
legend = c(”Original Distribution”, ”Exponential Gumbel”,
”Gumbel Three”,”Gumbel Two”,”Geometric Gumbel”,”Weibull Two”),
col =c(”red”,”blue”,”green”,”orange”,”purple”,”violet”), lwd = 4, bty = ”n”)
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