

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR SECOND SEMISTER EXAM

SCHOOL OF PURE APPLIED AND HEALTH SCIENCES MASTER OF SCIENCE IN APPLIED STATISTICS

COURSE CODE: STA 8211 COURSE TITLE: MULTIVARIATE ANALYSIS II

DATE: 04/5/24

TIME:0830-1030HRS

INSTRUCTIONS TO CANDIDATES

Answer Any Three Questions

Question One (20 Marks)

 $x_2 = 0$

,	significar	nce of cano	nical correlation co variance matrix;	(2Marks) (3Marks)
<i>x</i> ₁	<i>x</i> ₂	<i>y</i> ₁	y_2	
<i>x</i> ₁ 100	0	0	0	

0

$y_1 0$	0.75	5 0	100

0.75

1

Obtain the correlation co-efficient between the first pair of canonical variables (5marks)

d) The variance covariance matrix between 5 yield attributing parameters x_1 , x_2 , x_3 , x_4 , x_5 and four quality attributes y_1 , y_2 , y_3 , y_4 based on a sample size 200 is given as; Perform canonical correlation analysis and interpret your results. (10marks)

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>y</i> ₁	y_2	<i>y</i> ₃	y_4
<i>x</i> ₁	1.000	0.754	0.690	-0.44	0.702	-0.605	-0.48	0.78	-0.152
<i>x</i> ₂	0.754	1.00	-0.710	-0.515	0.412	-0.722	-0.419	0.542	-0.100
<i>x</i> ₃	-0.690	-0.710	1.000	0.323	-0.444	0.737	0.361	-0.546	0.172
x_4	-0.440	-0.515	0.323	1.000	-0.334	0.527	0.461	-0.393	-0.019
x_5	0.702	0.412	-0.444	-0.334	1.00	-0.383	-0.505	0.737	-0.148
y_1	-0.605	-0.722	0.737	0.527	-0.383	1.000	0.251	-0.490	0.250
y_2	-0.480	-0.419	0.361	0.461	-0.505	0.251	1.000	-0.434	-0.079
y_3	0.780	0.542	-0.546	-0.393	0.737	-0.490	-0.434	1.000	-0.163
y_4	-0.152	-0.100	0.172	-0.019	-0.148	0.250	-0.079	-0.163	1.000

Question Two: (20 Marks)

- a) Define the following terms as used in principal component analysis giving examples;
 - i) Quadratic form
 - ii) Bilinear form

b) Let A=
$$\begin{bmatrix} 3 & 6 & -1 \\ 6 & 9 & 4 \\ -1 & 4 & 3 \end{bmatrix}$$

- i) Find the spectral decomposition of A
- ii) Establish the relationship between; the eigenvalues, the determinants of the matrices, and the trace of the matrices. (6Marks)

(8Marks)

(3marks)

(3marks)

Question Three (20 Marks)

a. Define discriminant analysis (2 marks)

(2 marks)

(3marks)

- b. What is the aim of discriminant analysis
- c. Describe one example of discriminant analysis
- d. Consider two normal populations; $p_1: N(\mu_1, \sigma_1^2)$, and $p_2: N(\mu_2, \sigma_2^2)$, suppose that $\mu_1 = 0, \mu_2 = 1, \sigma_1 = 1$ and $\sigma_2 = 0.5$. Use discriminant analysis to allocate the variable of x to either the first population or the second population. (5Marks)
- e. Compute the linear discriminant projection for the following two-dimensional data set. $\pi_1 = (x_1, x_2) = (4, 2), (2, 4), (2, 3), (3, 6), (4, 4)$ $\pi_2 = (x_1, x_2) = (9, 10), (6, 8), (9, 5), (8, 7), (10, 8)$ (8marks)

Question four (20 marks)

a) consider the matrix R=
$$\begin{bmatrix} 1 & 0.975 & 0.613 \\ 0.975 & 1 & 0.620 \\ 0.613 & 0.620 & 1 \end{bmatrix}$$
 where $p = 3$ and $k = 1$,

i) Find the degrees of freedom d	(2marks)
ii) What is the implication when $d > 0, d < 0$, and $d = 0$	(2marks)
iii) Evaluate q_1^2 and $\hat{\varphi}_{11}$	(2marks)

Page 3 of 4

	Estimated factor Loadings		Communalities	Specific
				variance
Variable	\widehat{q}_1	\widehat{q}_2	h_j^2	$\hat{\varphi}_{ij} = 1 - h_j^2$
Taste	0.56	0.82		
Good buy	0.78	-0.53		
for money				
Flavor	0.65	0.75		
Suitable	0.94	-0.11		
for snack				
Provides a	0.80	-0.54		
lot of				
energy				

b) Consider the table below and answer the following questions,

i) Obtain the values of h_j^2 and $\hat{\varphi}_{ij}$

(6 marks)

- ii) Use the results above to perform factor analysis and give your conclusions (4marks)
- iii) Use the estimated factor loadings and the specific variance to ascertain that two factor model provides a good fit for the data if the original data is given by the matrix,

 $\begin{array}{c} 1.00\ 0.02\ 0.96\ 0.42\ 0.01\\ 0.02\ 1.00\ 0.13\ 0.71\ 0.85\\ 0.96\ 0.13\ 1.00\ 0.50\ 0.11\\ 0.42\ 0.71\ 0.50\ 1.00\ 0.79\\ 0.01\ 0.85\ 0.11\ 0.79\ 1.00 \end{array}$

(4marks)