

MAASAI MARA UNIVERSITY REGULAR UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER SCHOOL OF PURE, APPLIED AND HEALTH SCIENCES. DEGREE IN APPLIED STATISTICS WITH COMPUTING.

COURSE CODE: STA 4244-1

COURSE TITLE: SAMPLING THEORY AND METHODS II

DATE: TIME:

INSTRUCTIONS TO CANDIDATES

Answer Question ONE and any other TWO questions *This paper consists of FOUR printed pages. Please turn over.*

QUESTION ONE (20 MARKS)

Assuming that the random sample (x_i, y_i) , $i = 1, 2, ..., n$ is drawn by SRSWOR and a known population mean \overline{X} of X and \overline{Y} of Y. Given also that

$$
\varepsilon_0 = \frac{\bar{y} - \bar{y}}{\bar{y}} \quad \text{and } \varepsilon_1 = \frac{\bar{x} - \bar{x}}{\bar{x}}
$$

a.

(i) Show that
$$
E(\varepsilon_0^2) = \frac{f}{n} C_Y^2
$$

Where
$$
f = \frac{N-n}{N}
$$
, $S_Y^2 = \frac{1}{N-1} \sum_{i=1}^N (Y_i - \overline{Y})^2$ and $C_Y = \frac{S_Y}{\overline{Y}}$ (4 mks)

- (ii) Show that $E(\varepsilon_0 \varepsilon_1) = \frac{f}{n}$ $\frac{f}{n}\rho C_X C_Y$ where $C_X = \frac{S_X}{\bar{X}}$ $\frac{\partial X}{\partial \bar{x}}$ and ρ is the correlation coefficient between X and Y . (5 mks)
- b. Show that the ratio estimate $\widetilde{\overline{Y}_R}$ is the best linear unbiased estimator of \overline{Y} when:
- (i) The relationship between y_i and x_i is linear passing through the origin, that is $y_i = \beta x_i + e_i$ where $e'_i s$ are independent with $E(e_i|x_i) = 0$ and β is the slope parameter.

(ii) And the line is proportional to
$$
x_i
$$
, that is,
\n
$$
Var(y_i|x_i) = E(e_i^2) = Cx_i
$$
 where C is constant. (8 mks)

c. Give the procedure of sampling by Lahiri's method. (3 mks)

QUESTION TWO (15 MARKS)

- (a) Give the advantages and disadvantages of Lahiri's method of sampling procedure.
- (4 mks)
- (b) Let
	- Y_i : Value of study variable for the *i*th unit of the population, $i = 1, 2, \ldots, N$.
	- X_i : Known value of an auxiliary variable (size) for the i^{th} unit of the population.

 P_i : Probability of selection of ith unit in the population at any given draw and is proportional to size X_i . $Z_i = \frac{Y_i}{NP_i}$, $i = 1, 2, ..., N$.

Consider the varying probability scheme and with replacement for a sample of size n. Letting y_r = the value of r^{th} observation in the sample and Pr =initial probability of selecting yr. Using $z_r = \frac{y_r}{N_D}$, $r = 1, 2, ..., n$, then,

(i)
$$
\overline{Z} = \frac{1}{n} \sum_{i=1}^{n} z_i
$$
 is an unbiased estimator of the population mean \overline{Y} . Prove.
(4 mks)

(ii) Show that
$$
Var\left(\overline{Z}\right) = \frac{\sigma_Z^2}{n}
$$
 (7 mks)

QUESTION THREE (15 MARKS)

(a) Given that $\varepsilon_0 = \frac{\bar{y} - \bar{y}}{\bar{y}}$ $\frac{-\bar{Y}}{\bar{Y}}$ and $\varepsilon_1 = \frac{\bar{x}-\bar{X}}{\bar{X}}$ \bar{X} and that $\overline{\widetilde{Y}_R} = \frac{\overline{y}}{\overline{x}}$ $\frac{y}{\bar{x}}\bar{X}$ where \bar{X} is the population mean of X \overline{Y} is the population mean of Y \bar{x} is the sample mean of x \bar{y} is the sample mean of y

Writing $\widetilde{\overline{Y_R}}$ in terms of $\varepsilon' s$

(i) Show that $\overline{\widetilde{Y}_R} = (1 + \varepsilon_0)(1 + \varepsilon_1)^{-1}\overline{Y}$ (2 mks)

(ii) Show that
$$
\overline{\widetilde{Y}_R} = \overline{Y}(1 + \varepsilon_0 - \varepsilon_1 + \varepsilon_1^2 - \varepsilon_1 \varepsilon_0 + \cdots)
$$
 (4 mks)
(iii) Show that if we assume that the higher powers ε_0 and ε_1 more than 2 are negligibly

- small, then the Bias of $\widetilde{\overline{Y_R}}$ is given by $Bias\left(\overline{\widetilde{Y_R}}\right) = E\left(\overline{\widetilde{Y_R}} - \overline{Y}\right) = \frac{f}{n}$ $\frac{1}{n} Y C_X (C_X - \rho C_Y)$) (4 mks)
- (b) Given the Mean Squared Error of \widehat{Y}_R is given by

$$
MSE\left(\widehat{Y_R}\right) = \sum_{i=1}^N (Y_i - RX_i)^2
$$

 $=\sum_{i=1}^{N}(Y_i-\overline{Y})+R^2\sum_{i=1}^{N}(X_i-\overline{X})^2-2R\sum_{i=1}^{N}(X_i-\overline{X}) (Y_i-\overline{Y}).$

Prove by assuming that $\overline{Y} = R\overline{X}$ (5 mks)

QUESTION FOUR (15 MARKS)

Defining the product estimator of the population mean \overline{Y} as

$$
\left(\frac{\widetilde{\widetilde{Yp}}}{Y_p}\right) = \frac{\overline{yx}}{\overline{x}} \text{ assuming that the population mean } \overline{X} \text{ is known and letting}
$$
\n
$$
\varepsilon_0 = \frac{\overline{y} - \overline{Y}}{\overline{Y}} \quad \text{and } \varepsilon_1 = \frac{\overline{x} - \overline{X}}{\overline{x}}
$$
\na.\n(i) Show that the Bias $\left(\frac{\widetilde{\widetilde{Yp}}}{Y_p}\right)$ is given by\n
$$
Bias \left(\frac{\widetilde{\widetilde{Yp}}}{Y_p}\right) = \frac{f}{n\overline{X}} S_{XY} \tag{6 mks}
$$

(ii) Writing
$$
\overline{Y_p}
$$
 in terms of ε_0 and ε_1 ,
Show that

$$
MSE\left(\overline{Y_p}\right) = \overline{Y}^2 E(\varepsilon_1^2 + \varepsilon_0^2 + 2\varepsilon_1 \varepsilon_2)
$$
(4 mks)

b. Compare the variances of sample mean under SRSWOR with that of the product estimator. (5 mks)