

MAASAI MARA UNIVERSITY REGULAR UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER SCHOOL OF PURE, APPLIED AND HEALTH SCIENCES. DEGREE IN APPLIED STATISTICS WITH COMPUTING.

COURSE CODE: STA 4244-1

COURSE TITLE: SAMPLING THEORY AND METHODS II

DATE:

TIME:

INSTRUCTIONS TO CANDIDATES

Answer Question ONE and any other TWO questions This paper consists of FOUR printed pages. Please turn over.

QUESTION ONE (20 MARKS)

Assuming that the random sample (x_i, y_i) , i = 1, 2, ..., n is drawn by SRSWOR and a known population mean \overline{X} of X and \overline{Y} of Y. Given also that

$$\varepsilon_0 = \frac{\bar{y} - \bar{Y}}{\bar{Y}} \quad and \ \varepsilon_1 = \frac{\bar{x} - \bar{X}}{\bar{X}}$$

a.

(i) Show that
$$E(\varepsilon_0^2) = \frac{f}{n}C_Y^2$$

Where
$$f = \frac{N-n}{N}$$
, $S_Y^2 = \frac{1}{N-1} \sum_{i=1}^N (Y_i - \overline{Y})^2$ and $C_Y = \frac{S_Y}{\overline{Y}}$ (4 mks)

- (ii) Show that $E(\varepsilon_0 \varepsilon_1) = \frac{f}{n} \rho C_X C_Y$ where $C_X = \frac{S_X}{\bar{X}}$ and ρ is the correlation coefficient between X and Y. (5 mks)
- b. Show that the ratio estimate $\overline{\widetilde{Y_R}}$ is the best linear unbiased estimator of \overline{Y} when:
- (i) The relationship between y_i and x_i is linear passing through the origin, that is $y_i = \beta x_i + e_i$ where $e'_i s$ are independent with $E(e_i | x_i) = 0$ and β is the slope parameter.

(ii) And the line is proportional to
$$x_i$$
, that is,
 $Var(y_i|x_i) = E(e_i^2) = Cx_i$ where C is constant. (8 mks)

c. Give the procedure of sampling by Lahiri's method. (3 mks)

QUESTION TWO (15 MARKS)

- (a) Give the advantages and disadvantages of Lahiri's method of sampling procedure.
- (4 mks)
- (b) Let
 - Y_i : Value of study variable for the i^{th} unit of the population, i = 1, 2, ..., N.
 - X_i : Known value of an auxiliary variable (size) for the i^{th} unit of the population.

 P_i : Probability of selection of i^{th} unit in the population at any given draw and is proportional to size X_i . $Z_i = \frac{Y_i}{NP_i}$, i = -1, 2, ..., N. Consider the varying probability scheme and with replacement for a sample of size n. Letting y_r = the value of r^{th} observation in the sample and Pr =initial probability of selecting yr. Using $z_r = \frac{y_r}{Np_r}$, r = 1, 2, ..., n, then,

(i)
$$\overline{Z} = \frac{1}{n} \sum_{i=1}^{n} z_i$$
 is an unbiased estimator of the population mean \overline{Y} . Prove.
(4 mks)
(ii) Show that $Var(\overline{Z}) = \frac{\sigma_z^2}{n}$
(7 mks)

QUESTION THREE (15 MARKS)

(a) Given that $\varepsilon_0 = \frac{\bar{y} - \bar{Y}}{\bar{Y}}$ and $\varepsilon_1 = \frac{\bar{x} - \bar{X}}{\bar{X}}$ and that $\widetilde{\overline{Y_R}} = \frac{\bar{y}}{\bar{x}}\bar{X}$ where \bar{X} is the population mean of X \bar{Y} is the population mean of Y \bar{x} is the sample mean of x \bar{y} is the sample mean of y

Writing $\overline{\widetilde{Y_R}}$ in terms of $\varepsilon's$

(i) Show that $\overline{\widetilde{Y}_R} = (1 + \varepsilon_0)(1 + \varepsilon_1)^{-1}\overline{Y}$ (2 mks) (ii) $\overline{Y}_R = \overline{Y}(1 + \varepsilon_0)(1 + \varepsilon_1)^{-1}\overline{Y}$ (2 mks)

(ii) Show that
$$Y_R = Y(1 + \varepsilon_0 - \varepsilon_1 + \varepsilon_1^2 - \varepsilon_1\varepsilon_0 + \cdots)$$
 (4 mks)
(iii) Show that if we assume that the higher powers ε_0 and ε_1 more than 2 are poslicily

- (iii) Show that if we assume that the higher powers ε_0 and ε_1 more than 2 are negligibly small, then the Bias of $\overline{Y_R}$ is given by $Bias\left(\overline{Y_R}\right) = E\left(\overline{Y_R} - \overline{Y}\right) = \frac{f}{n}\overline{Y}C_X(C_X - \rho C_Y)$ (4 mks)
- (b) Given the Mean Squared Error of $\widehat{Y_R}$ is given by

$$MSE\left(\widehat{Y_R}\right) = \sum_{i=1}^{N} (Y_i - RX_i)^2$$

 $= \sum_{i=1}^{N} (Y_i - \overline{Y}) + R^2 \sum_{i=1}^{N} (X_i - \overline{X})^2 - 2R \sum_{i=1}^{N} (X_i - \overline{X}) (Y_i - \overline{Y}).$

Prove by assuming that $\overline{Y} = R\overline{X}$ (5 mks)

QUESTION FOUR (15 MARKS)

Defining the product estimator of the population mean \overline{Y} as

$$\left(\frac{\widetilde{Y}_p}{\widetilde{Y}_p}\right) = \frac{\overline{yx}}{\overline{x}}$$
 assuming that the population mean \overline{X} is known and letting
 $\varepsilon_0 = \frac{\overline{y} - \overline{Y}}{\overline{Y}}$ and $\varepsilon_1 = \frac{\overline{x} - \overline{X}}{\overline{X}}$
a.

(i) Show that the
$$Bias\left(\overline{Y_p}\right)$$
 is given by
 $Bias\left(\overline{\widetilde{Y_p}}\right) = \frac{f}{n\overline{X}}S_{XY}$ (6 mks)
(ii) Writing $\overline{\widetilde{Y_p}}$ in terms of ε_0 and ε_1 ,
Show that
 $MSE\left(\overline{\widetilde{Y_p}}\right) = \overline{Y}^2 E(\varepsilon_1^2 + \varepsilon_0^2 + 2\varepsilon_1\varepsilon_2$ (4 mks)

b. Compare the variances of sample mean under SRSWOR with that of the product estimator. (5 mks)