QUESTION ONE (30 MARKS)

(a) Let π_i be the probability of including unit i in the sample. Define $\alpha_i = \{1, \text{if the ith unit is in the sample and 0 otherwise. Further, let <math>Y$ and X be the survey variable and auxiliary variable respectively.

Prove that the Horvitz-Thomson estimator $\bar{y}_{HT} = \sum_{i \in s} \frac{y_i}{N_{\pi_i}}$ is unbiased for \bar{Y} [3 Marks]

- (b) (i) Derive the simplification for the variance of the Horvitz-Thomson $Var(\bar{y}_{HT})$ due to Yates and Grundy. [3 Marks]
 - (ii) Explain a drawback for the variance estimator due to Yates and Grundy. [2 Marks]
- (c) In a population with N=6 the values of y_i are 8,3,1,11,4 and 7. Calculate the sample mean \bar{y} for all possible simple random samples of size 2. Verify that \bar{y} is an unbiased

estimate of \bar{Y} and show that $var(\bar{y}) = \left(\frac{N-n}{n}\right)\frac{S^2}{n}$; $S^2 = \frac{\sum_{i=1}^n (y_i - \bar{Y})^2}{N-1}$. [4 Marks]

- (d) For N=4, n=2 Consider the estimator $\hat{Y}_{12}=\frac{1}{2}y_1+\frac{1}{2}y_2$, $\hat{Y}_{13}=\frac{1}{2}y_1+\frac{2}{3}y_3$, $\hat{Y}_{23}=\frac{1}{2}y_2+\frac{1}{3}y_3$, where, $\hat{\overline{Y}}_{ij}$ is the estimator for the sample that has units (i,j). Prove that $\hat{\overline{Y}}_{ij}$ is unbiased and that $V(\hat{\overline{Y}}_{ij}) < V(\bar{y})$ if $y_3(3y_2-3y_1-y_3) > 0$. [4 Marks]
- (e) Let Y_1, Y_2, \dots, Y_N be population values from which a simple Random Sample of size n is picked under a no Replacement Scheme. Define an estimator of the population mean as $\hat{Y} = \sum_{i=1}^{n} \left(\left(\frac{y_i}{N_{\pi_i}} \right) \right)$ where π_i is the inclusion probability of the i^{th} unit in the said population.
 - (i) Show that the defined estimator in its form is unbiased for the population mean $\bar{Y} = \frac{1}{N} \sum_{i}^{N} Y_{i}$ [5 Marks]
 - (ii) Derive the variance of the defined estimator and briefly discuss it. [4 Marks]
- (f) Suppose that from certain population H, there are r_h respondents with n_h non-respondents. A sampler wishes to assign a value to every missing one. In this case, explain ny use of appropriate mathematical expressions and or equations, how the sampler would perform;
 - (i) Random Imputation [2 Marks]
 - (ii) Nearest Neighbour Imputation [3 Marks]

QUESTION TWO (20 MARKS)

- (a) Let a population consist of N units and suppose that the population is divided into k mutually disjoint strata in such a way that the i^{th} stratum has N_i units. A surveyor requires a sample of size n from this stratified population where Y_{ij} represents the j^{th} observation in the i^{th} stratum. Being that from the i^{th} stratum, a sample of size n_i is picked with y_{ij} being the j_{th} sampled measurement from the i_{th} stratum.
 - (i) Let $\bar{y}_w = \sum_i^k \left(\frac{N_i}{N} \bar{y}_i\right)$, Where \bar{y}_i is the mean of the sampled units from the i^{th} stratum. Show that \bar{y}_w is an unbiased estimator of the population mean \bar{Y} , derive its variance and discuss the circumstances under which it would vanish. [10 Marks]

(ii) The sampler during the pilot phase tried sampling from this population and realized that using a simple mean $\bar{y} = \frac{1}{n} \sum_{i=1}^{N} Y_i$, $var(\bar{y}) = \left(\frac{1}{n} - \frac{1}{N}\right) S^2$

Whereas in using stratified sampling and assigning sample sizes to every stratum optimally, with a fixed overall sample size n.

$$\operatorname{var}(\bar{y}) = \frac{1}{n} \left(\sum_{i}^{N} \frac{N_i}{N} S^2 \right) - \frac{1}{N} \left(\sum_{i}^{N} \frac{N_i}{N} \right) S^2$$

By comparing the two variances, advice the surveyor, with reasons, on the best scheme to adopt. [10 Marks]

QUESTION THREE (20 MARKS)

(a) Assume that a population has NM elements grouped in N clusters each with size M_i . Suppose that one picks a sample of size n from this population and wishes to estimate the population mean, say, \bar{Y} using this sample. The estimators $\hat{Y}_1 = \frac{1}{n} \sum_{i=1}^{n} \bar{y}_i$ and

 $\hat{Y}_2 = \frac{1}{n} \sum_{i=1}^{n} \frac{M_i}{M} \bar{y}_i$ are proposed, where \bar{y}_i is the mean of the sampled values from the i^{th} cluster. Derive the variances of the two estimators and choose the best one of the two citing reasons for your choice. [20 Marks]

QUESTION FOUR (20 MARKS)

- (a) Briefly explain with the aid of relevant and logical examples, the concept of;
 - (i) Repeated sampling
 - (ii) Double sampling

as used in studies of finite population

[6 Marks]

- (b) Consider a fixed population model in which the population under study is split into two parts, the respondents R and the non-respondents M with r denoting the sample from the respondents and m representing the sample from the non-respondents. Defining $y_1, y_2, y_3, \dots, y_r$ as the observations from the respondents with a sample mean of $\bar{y}_r = \frac{1}{r} \sum_{i=1}^r y_i$ derive an expression for the bias of \bar{y}_r as an estimator of the population mean \bar{Y} and briefly discuss your result.
- (c) One of the main drawbacks of systematic sampling is that it's a Simple Random Sample with only one cluster. Because of this, it is never possible to propose an estimator of the variance based on such a sample. Carefully explain a possible method that can be employed to address this problem and provide a real life example to illustrate your proposition.

[6 Marks]