

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR FIRST YEAR FIRST SEMESTER

SCHOOL OF PURE APPLIED AND HEALTH SCIENCES MASTER OF SCIENCE IN PURE MATHEMATICS

COURSE CODE: MAT 8105

COURSE TITLE: ABSTRACT INTEGRATION

DATE:	DURATION:

INSTRUCTIONS TO CANDIDATES

Answer Question ONE and any other TWO questions

This paper consists of **THREE** printed pages. Please turn over.

QUESTION ONE (30 MARKS)

- a) Let A and B be non-empty sets, prove monotonicity of the outer measure on A and B. (4 marks)
- **b)** Prove that if E has measure zero, then every subset of E is measurable.
- (5 marks)
- c) Define a measurable function hence prove that a constant function with measurable domain is measurable.
- (3 marks)

d) State and prove monotone convergence theorem.

- (5 marks)
- e) Using counter example, show that bounded convergence theory need not be true in Riemann integral.

(4 marks)

f) Define a Cauchy sequence in measure hence show that if a sequence $\langle f_n \rangle$

convergence in measure to f, then $\langle f_n \rangle$ is a Cauchy sequence in measure. (4 marks)

g) Using a counter example show that a bounded measurable function need not be Riemann integrable.

(5 marks)

QUESTION TWO (15 MARKS)

a) Show that the outer measure is translational invariant.

(3 marks)

b) Define convergence of measurable functions $\left\langle f_{_{n}}\right\rangle$ hence show that if a sequence $\langle f_n \rangle$ converges in measure to a function f, then the limit function f is unique almost everywhere $\left\langle f_{_{n}}\right\rangle .$

(4 marks)

c) State and Prove Fatou's lemma.

(4 marks)

d) Prove that if f is a measurable function over set E and if g is integrable function such that $|f| \le g$, the f is integrable over E.

(4 marks)

QUESTION THREE (15 MARKS)

a) Prove that the union of two measurable sets is measurable.

(5 marks)

- b) Define a σ -algebra hence show that the collection M of measurable sets is a σ-algebra.
 - (5 marks)
- c) Let f be a bounded function defined on [a,b], show that if f is Reimann

integrable on [a,b] then it is Lebesque measurable and $R \int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$ (5 marks)

QUESTION FOUR (15 MARKS)

- a) Prove that every borel set is measurable. (3 marks)
- b) State and prove Lebesque bounded convergence theorem. (5 marks)
- c) Prove that f = 0 a.e if $\int_E f = 0$ and $f(x) \ge 0$ on E. (7 marks)