MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR THIRD YEAR SECOND SEMESTER

SCHOOL OF PURE, APPLIED AND HEALTH SCIENCES BACHELOR OF SCIENCE APPLIED STATISTICS WITH COMPUTING

COURSE CODE: STA 3229-1 COURSE TITLE: TESTING OF HYPOTHESIS

DATE:

TIME:

INSTRUCTIONS TO CANDIDATES

- 1. Answer **<u>Question ONE</u>** and any other **Two** questions.
- 2. Show all the workings clearly
- 3. Do not write on the question paper
- 4. All Examination Rules Apply.

Question One (20 Marks)

(a) Let X_1, \ldots, X_{10} be a random sample of size 10 from the Bernoulli distribution

$$f(x;\theta) = \theta^{x} (1-\theta)^{1-x}, \ x = 0,1$$
$$= 0, \qquad elsewhere$$

In testing $H_0: \theta = \frac{1}{2}$ against $H_1: \theta = \frac{1}{4}$, the critical region

$$C = \left\{ (x_1, x_2, \dots, x_{10}); \sum_{i=1}^{10} x_i \le 2 \right\}$$

Is used. Find the significance level α .

- (b) Let $X_1, ..., X_n$ be a random sample of size n from $N(\theta, 1)$. Show that the likelihood ratio principle. For testing $H_o: \theta = \theta_1$, where θ_1 is specified, against $H_1: \theta \neq \theta_1$ leads to the inequality $|\bar{x} - \theta_1| \ge c$. (10 marks)
- (c) A random sample X_1, \dots, X_{15} from $N(\mu, \sigma^2)$ yielded $s^2 = 0.080$. Letting $\alpha = 0.05$, test $H_o: \sigma^2 = 0.09$ against $H_1: \sigma^2 \neq 0.09$. (5 marks)
- (d) X₁,..., X₁₂ is a random sample from a bivariate normal distribution which yielded a sample correlation coefficient r=0.6. Test H_o: ρ=0 against H₁: ρ≠0 at α = 0.05.
 (5 marks)

Question Two (15marks)

- (a) Define the following terms:
 - (i) Test of statistical hypothesis.
 - (ii) Critical region.
 - (iii) Significance level.
- (b) Let X_1, \ldots, X_{25} be a random sample of size n=25 from $N(\theta, 81)$. To test $H_o: \theta = 90$

against $H_1: \theta = 86$, the critical region $C = \{(x_1, x_2, ..., x_n); \overline{x} < 87\}$ is used.

Find the

- (i) probability of committing type I error
- (ii) probability of committing type II error.

(6 marks)

(6 marks)

(9 marks)

Question Three (15 marks)

(a) Let X_1, \ldots, X_n be a random sample from an exponential distribution with mean θ . Show that the

Likelihood ratio test of $H_o: \theta = \theta_o$ against $H_1: \theta \neq \theta_o$ has a critical region of the form

$$\sum_{i=1}^{n} x_{i} \le c_{1} \quad or \quad \sum_{i=1}^{n} x_{i} \ge c_{2}.$$
 (8 marks)

(b) $X_1, ..., X_n$ is a random sample from a Poisson distribution with parameter θ . Derive the likelihood ratio test for $H_o: \theta = \theta_o$ against $H_1: \theta < \theta_o$. (7 marks)

Question Four (15 marks)

Given below are values of random variables X and Y

X	8	6	6	8	9	12	2	5	6	8	5	11	10
Y	50	22	14	42	75	93	10	53	51	71	34	28	78

(a) Calculate the least squares regression line $y = \alpha + \beta(x - \overline{x})$.

(b) Test $H_o: \beta = 0$ against $H_1: \beta \neq 0$ at $\alpha = 0.05$. (15 marks)