UNIVERSITY EXAMINATIONS, 2023 FIRST YEAR EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE 8219:- :PARTIAL DIFFERENTIAL EQUATIONS II Instructions to candidates:

Answer Question ONE and two Other Questions. All Symbols have their usual meaning

DATE: April 2023 TIME:9.00 a.m. to 12.00 NOON

Question 1:Entire syllabus (30 Marks)

(a) (Linear Evolution equations) Assume $U \subset \mathbb{R}^n$ is an open, bounded set, with smooth boundary, and T > 0. Prove there is at most one smooth solution of the IBVP (1) for the heat equation with Neumann boundary conditions

$$u_t - \Delta u = f \text{ in } U_T,$$

$$\frac{\partial u}{\partial \nu} = 0 \text{ on } \partial U \times [0, T],$$

$$u = g \text{ on } U \times \{t = 0\}.$$
(1)

(5 Marks)

(8 Marks)

(b) Assume U is connected. Use (i) energy methods and (ii) the maximum principle to show that the only smooth solutions of the Neumann boundary-value problem

$$-\Delta u = 0 \text{ in } U,$$

$$\frac{\partial u}{\partial \nu} = 0 \text{ on } \partial U$$
(2)

are u = C, for some constant C.

(c) Assume $u \in H^1(U)$ is a bounded weak solution of

$$-\operatorname{div}(A(x)Du) = 0 \quad \text{in} \quad U, \tag{3}$$

where $A(x) \in L^{\infty}(U)$. Let $\phi : \mathbb{R} \to \mathbb{R}$ be convex and smooth, and set $w = \phi(u)$. Show that w is a weak subsolution; that is,

$$B[w,v] \le 0 \quad \forall \quad v \in H_0^1(U), \quad v \ge 0.$$

(3 Marks)

(d) Consider the Hamilton-Jacobi equation:

$$u_t + H(Du) = 0 \quad \text{in } \mathbb{R}^n \times (0, \infty)$$

$$u = g \quad \text{on } \mathbb{R}^n \times \{t = 0\}, \tag{4}$$

where $u : \mathbb{R}^n \times [0, \infty)$ is the uknown, u = u(x, t), and $Du = D_x u = (u_{x_1}, \ldots, u_{x_n})$, and $H : \mathbb{R}^n \to \mathbb{R}$, the Hamiltonian, and $g : \mathbb{R}^n \to \mathbb{R}$ are given. Let $L = L(v, x), \quad (v, x) \in \mathbb{R}^n \times \mathbb{R}^n$ be the Lagrangian. Set $\dot{w}(s) := v, \quad w(s) := x$. For fixed $x, y \in \mathbb{R}^n$, define the action functional:

$$I[w(.)] := \int_0^t L(\dot{w}(s), w(s)) ds,$$
(5)

where the dot denotes the derivative with respect to s. Let w in (5) belong to the *admissible* set

$$\mathcal{A} := \{ w(.) \in C^2([0,t]; \mathbb{R}^n) | w(0) = y, w(t) = x \}.$$

The basic problem is to find a curve $x(.) \in \mathcal{A}$ satisfying

$$I[x(.)] = \min_{w(.) \in \mathcal{A}} I[w(.)].$$
 (6)

Proof the function x(.) solves the system of Euler-Lagrange equations

$$-\frac{d}{ds}(D_v L(\dot{x}(s), x(s))) + D_x L(\dot{x}(s), x(s)) = 0, \quad 0 \le s \le t.$$

(8 Marks)

(e) (Lax-Milgram Theorem)Assume that

$$B: H \times H \to \mathbb{R}$$

is a bilinear mapping, for which there exist constants $\alpha, \beta > 0$ such that

(i) $|B[u,v]| \le \alpha ||u|| ||v||, \quad (u,v \in H)$ and (ii) $\beta ||u||^2 \le B[u, u], \quad u \in H.$

Finally, let $f: H \to \mathbb{R}$ be a bounded linear functional on H. Then there exists a unique element $u \in H$ such that

$$B[u, v] = < f, v >$$

for all $v \in H$.

Use the Lax-Milgram theorem to prove the following: There exist constants $\alpha,\beta>0$ and $\gamma\geq 0$ such that

$$|B[u,v]| \le \alpha ||u||_{H_0^1(U)} ||v||_{H_0^1(U)},$$

and

$$\beta ||u||_{H^1_0(U)}^2 \le B[u, u] + \gamma ||u||_{L^2(U)}^2$$

for all $u, v \in H_0^1(U)$

Question 2 (20 Marks) (Second-order Elliptic Equations).

(3 Marks)

(3 Marks)

(a) Let $U \subset \mathbb{R}^n$ be open and bounded. Suppose $u \in W^{1,p}(U)$ for some $1 \leq p < n$. Prove that $u \in L^q(U)$, with estimate

$$||u||_{L^{q}(U)} \le C||Du||_{L^{p}(U)},$$
 (3 Marks)

for each $q \in [1, p^*]$, the constant C depends only on p, q, n, and U. In particular, $\forall 1 \le p \le \infty$,

$$||u||_{L^p(U)} \le C||Du||_{L^p(U)}. \qquad (2 \quad \text{Marks})$$

(b) Hence show that for $u \in H^2_0(U)$,

$$||u||_{L^2(U)} \le C_1 ||Du||_{L^2(U)}, \quad (1 \text{ Mark})$$

(ii)

 $||Du||_{L^2(U)} \le C_2 ||D^2u||_{L^2(U)},$ (2 Marks)

where C_1, C_2 are constants. The Poincar'e Inequality for $H_0^2(U)$ - norm

$$||u||_{H^2_0(U)} \le C_3 ||D^2 u||^2_{L^2(U)},$$
 (2 Marks)

(iv)

$$||\Delta u||_{L^2(U)} = |D^2 u||^2_{L^2(U)},$$
 (2 Marks)

where C_3 is a constant and

 (\mathbf{v})

$$||u||_{H^2_0(U)} \le |\Delta u||^2_{L^2(U)}, \forall \ u \in H^2_0(U)$$
 (2 Marks)

(c) For a given $f \in L^2(U)$, prove that the function $u \in H^2_0(U)$ is a unique weak solution of the boundary-value problem for the *biharmonic equation*

$$\begin{aligned} \Delta^2 u &= f, & \text{in } U; \\ u &= 0 = \frac{\partial u}{\partial \nu} &= 0, & \text{on } \partial U, \end{aligned}$$

provided

$$\int_{U} \Delta u \Delta v dx = \int_{U} f v dx$$

for all $v \in H_0^2(U)$.

(6 Marks)

Question 3 (20 Marks)(Application of Semigroup to PDEs)Consider first the parabolic initial/boundary-value problem

$$u_t + Lu = 0 \text{ in } U_T$$

$$u = 0 \text{ on } \partial U \times [0, T]$$

$$u = g \text{ on } U \times \{t = 0\},$$
(7)

We assume Lu = -div(A(x)Du) + b(x).Du + c(x)u and satisfies the usual strong ellipticity condition, and has smooth coefficients, which do not depend on t. We additionally suppose that the bounded open set U has a smooth boundary. We propose to reinterpret Equation (7) as the flow determined by a semigroup on $X = L^2(U)$. Set $\mathcal{D}(A) := H_0^1(U) \cap H^2(U)$ and define Au := -Lu, if $u \in \mathcal{D}(A)$. You will need the Hille-Yosida Theorem and the energy estimates

$$\beta ||u||_{H^1_0(U)}^2 \le B[u,u] + \gamma ||u||_{L^2(U)}^2$$

for constants $\beta > 0, \gamma \ge 0$, where B[,] is the bilinear form associated with L.

- (a) Show that $\mathcal{D}(A)$ is dense in X (1 Mark)
- (b) Prove that the Operator A is closed (4 Marks)
- (c) Recall

$$\lambda u + Lu = f \text{ in } U$$

$$u = 0 \quad \text{on } \partial U \text{ on } U, \qquad (8)$$

has a unique weak solution $u \in H_0^1(U)$ for each $f \in L^2(U)$ provided $\lambda \ge \gamma$. Prove that the resolvent operator $R_{\lambda} := (\lambda I - A)^{-1}$ satisfies

$$||R_{\lambda}|| \le \frac{1}{\lambda - \gamma}, \quad \lambda > \gamma$$

(10 Marks)

(d) Hence show that Equation (7) has a γ -contraction semigroup. (5 Marks)

Question 4 (20 Marks)(Calculus of Variations)Let $u \in \mathbb{R}^n$ be a bounded open set with Lipschitz boundary.

(a) Show there exists a unique minimizer $u \in \mathcal{A}$ of

$$I[w] := \int_{U} \frac{1}{2} |Dw|^{2} - fw dx,$$

where $f \in L^2(U)$ and

$$\mathcal{A} := \{ w \in H_0^1(U) || Dw| \le 1 \ a.e. \}.$$

(10 Marks)

(10 Marks)

(b) Prove

$$\int_{U} Du.D(w-u)dx \ge \int_{U} f(w-u)dx,$$

for all $w \in \mathcal{A}$.

The final Mark of this paper will be out of 60%