One-pot synthesis of Novel isoxazoline, pyrazoles, bypyrimidine and Oxime templates and their antimicrobial activity

Evans Okemwa Kenanda

Department of Chemistry, School of Pure and Applied Science, Kisii University, Kisii, Kenya

ekenanda@kisiiuniversity.ac.ke

Abstract

Novel isoxazoline, pyrazole, oxime and bypyrimidine analogues have been synthesized from the flavonoids of *Polygonum senegalense and Psiadia punctulata* as starting material. Both isoxazolines and pyrazoles are known to possess a wide range of biological activities. The isoxazoline derivative, 2-(4,5-dihydro-5-phenylisoxazol-3-yl)-5-methoxybenzene-1,3diol (1), was successfully synthesized by a reaction of a chalcone with hydroxylamine hydrochloride. A reaction between a flavone and hydrazine hydrate (excess) in ethanol afforded a pyrazole, 5-methoxy-2-(5-(2,3,4,5- tetramethoxyphenyl)-1H-pyrazol-3yl)benzene-1,3-diol (2). The oxime (3) was obtained by reacting 1',4'-dihydroxy-6'methoxychalcone chalcone with hydroxylamine hydrochloride. The synthesis of bypyrimidine, 4,5-dihydro-6-(2,4- dihydroxy-B,6-dimethoxyphenyl)-4-phenylpyrimidine-2-(1*H*)- thione (**4**) was accomplished by the reaction of -unsaturated chalcone with thiourea. The structure proofs were provided by ESIHRMS, ¹H-NMR, ¹³C-NMR and DEPT analyses. Compound **1** exhibited anti-fungal activity showing 1C₅₀ values of 7.56, 8.01, 8.01 and 13.74µg/ml against S. aureus, C. neoformans, C. krusei and C. glabrata respectively. The compound also exhibited anti- leishmanial IC₅₀ activity value of 33.98 μ g/mL against Leishmania donovani. The other analogues demonstrated insignificant anti-fungal and Antileishmanial activities against standard strains. Compound 1 was, therefore, found to be a potential lead for fungal diseases and leishmaniasis.

Key: pyrazole, isoxazoline, oxime, bypyrimidine