

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR THIRD YEAR FIRST SEMESTER

SCHOOL OF BUSINESS AND ECONOMICS BACHELOR OF SCIENCES IN FINANCIAL ECONOMICS

COURSE CODE: ECF 3104 COURSE TITLE: THEORY OF FINANCE

DATE: 28TH MARCH, 2022

TIME: 0830-1030

INSTRUCTIONS TO CANDIDATES

1. Answer Question ONE and any other three questions

. Please turn over.

Question I

a) Define the following terms as used in finance:

i)	Moral hazards	(1 mark)
ii)	Primary financial markets	(1 mark)
iii)	Information asymmetry	(1 mark)
iv)	Idiosyncratic risk	(1 mark)
v)	Holding period return	(1 mark)

b) Suppose a three-factor model is appropriate to describe the returns of a stock. Information about those three factors is presented in the following chart. Suppose this is the only information you have concerning the factors.

	Factor	Beta of Factor	Expected Value	Actual Val	ue
	GNP	0.0042	\$4,416	\$4,480	
_	Inflation	-1.40	3.1%	4.3%	
_	Interest Rate	-0.67	9.6%	11.8%	
i)	What is the sy	stematic risk of th	e stock return?		(3 marks)
ii)	Interpret the (GNP beta, and inte	erest rate beta		(2 marks)
iii)	announced th	at dampens the r	l news about the eturns by 2.6 percer f the stock return?		(1 mark)
iv)		expected return of n on this stock?	the stock is 9.5 percent	cent. What is	(2 marks)
	Explain any 3 pc sector.	otential solutions	to agency conflicts i	in the public	(6 marks)
	5	ferences between Arbitrage Pricing	the Capital Asset Pr Theory (APT)	ricing Model	(6 marks)
uesti	ion 2				
,		in which agency c	Agency Theory expla onflicts may arise. E		(6 marks)
	2	pects of agency cos	sts		(6 marks)
c)	Define the three f	forms of market ef	ficiency		(3 mark
uesti	ion 3				
	Differentiate betv on a stock investi	5	ld and percentage re	eturn	(2 marks)
b)	Suppose a stock and ends with a j	begins the year w price of \$35 per sh	ith a price of \$25 pe are. During the year are its dividend yi	it paid	(3 marks)

capital gain, and its total return for the year?

c) The returns on the market of common stocks and on Treasury bills are contingent on the economy as follows

-	Economic Condition	Probability	Market Return (%)	Treasury Bills (%)	
-	Recession	0.25	-8.2	3.5	
-	Normal	0.50	12.3	3.5	
-	Boom	0.25	25.8	3.5	
i)	i) Calculate the expected returns on the market and Treasury (2 ma				
	bills				

- ii) Calculate the expected risk premium (1 mark)
- d) The returns on the small-company stocks and on the blue-chip company stocks from 2016 through 2020 are tabulated below.

	Year	Small-Company Stocks (%)	Blue-Chip Company S	tocks (%)	
	2016	47.7	40.2		
	2017	33.9	64.8		
	2018	-35.0	-58.0		
	2019	31.0	32.8		
	2020	-0.5	0.4		
i)	Calculate the average return for the small-company stocks (2 marks) and the Blue-Chip Company stocks.				
ii)	Calculate the variance and standard deviation of returns (5 marks) for the small-company stocks and the Blue-Chip Company stocks.				

Question 4

- a) Draw the security market line for the case where the market-risk (4 marks) premium is 5 percent and the risk-free rate is 7 percent.
- b) Suppose that an asset has a beta of -1 and an expected return of 4 percent
- i) Plot it on the graph you drew in part (a) (4 marks)
- ii) Is the security properly priced? If not, explain what will happen (1 mark) in this market.
- c) Suppose you have invested \$30,000 in the following four stocks:

Security	Amount Invested (\$)	Beta
Stock A	5,000	0.75
Stock B	10,000	1.10
Stock C	8,000	1.36
Stock D	7,000	1.88

The risk-free rate is 4 percent and the expected return on the market portfolio is 15 percent. Based on the CAPM, what is the expected return on the above portfolio?

(6 marks)

Question 5

, co	ou own stock in Vertex Pharmaceuticals (a Covid-19 vaccine manu ompany). Explain what would occur to the stock prices in the event ollowing hypothetical events occurred.	0
i)	The president of the firm would announce her retirement. The retirement would be effective six months from the announcement day. The president is well liked: in general, she is considered an asset to the firm	(2 marks)
ii)	Lab researchers had a breakthrough with another drug that increases the company's products portfolio.	(2 marks)
iii)	Interest rates would rise 2.5 percentage points. The returns of Vertex Pharmaceuticals are negatively related to interest rates.	(2 marks)
iv)	A competitor announced that it will begin distribution and sale of a medicine that will compete directly with one of Le Vertex Pharmaceuticals' vaccine.	(2 marks)
v)	In an ordinary sitting of the African Union presidents, a consultant demonstrates how effective the vaccine is and promotes its use.	(2 marks)
ef	ou are conducting a cumulative average residual study on the fect of airline companies' buying new planes. The announcement ates for the purchase of the planes were July 18 (7/18) for Delta,	(5 marks)

February 12 (2/12) for United, and October 7 (10/7) for American. Construct a cumulative abnormal return (CAR) for these stocks as a group, chart it, and explain it. All stocks have a beta of 1

Delta			United			American		
Date	Market	Company	Date	Market	Company	Date	Market	Company
	Return	Return		Return	Return		Return	Return
7/12	-0.3	-0.5	2/8	-0.9	-1.1	10/1	0.5	0.3
7/13	0.0	0.2	2/9	-1.0	-1.1	10/2	0.4	0.6
7/16	0.5	0.7	2/10	0.4	0.2	10/3	1.1	1.1
7/17	-0.5	-0.3	2/11	0.6	0.8	10/6	0.1	-0.3
7/18	-2.2	1.1	2/12	-0.3	-0.1	10/7	-2.2	-0.3
7/19	-0.9	-0.7	2/15	1.1	1.2	10/8	0.5	0.5
7/20	-1.0	-1.1	2/16	0.5	0.5	10/9	-0.3	-0.2
7/23	0.7	0.5	2/17	-0.3	-0.3	10/10	0.3	0.1
7/24	0.2	0.1	2/18	0.3	0.3	10/13	0.0	-0.1

SOME FINANCIAL ECONOMICS FORMULAE

$R = \overline{R + m + \epsilon}$
$cov(R_i, R_M)$
$\boldsymbol{\beta}_i = \frac{Cov(\boldsymbol{R}_i, \boldsymbol{R}_M)}{\sigma^2(\boldsymbol{R}_M)}$
Expected return = $r_f + \beta (r_m - r_f)$
Where: $r_f = risk - free \ rate, \beta =$
beta, and $\vec{r}_m = return$ on the market

✓ Expected Portfolio Return	$(\hat{R}_P) = W_1 X_1 + W_2 X_2 + \dots + W_n X_n \equiv \sum_{i=1}^n W_i X_i$
✓ Future value of a Single Cash Flow	$Future value = PV (1+r)^n$
 ✓ Future Value of an Annuity Due 	$FVAND_n = PMT\left[\frac{(1+i)^n - 1}{i}\right](1+i)$ $FVAN_n = PMT\left[\frac{(1+i)^n - 1}{i}\right]$
 ✓ Future Value of an Ordinary Annuity (FVANn) 	$FVAN_n = PMT[\frac{(1+i)^n - 1}{i}]$
 ✓ Portfolio Standard Deviation 	$\delta(portfolio) = \sqrt{X_A^2 \delta_A^2 + 2X_A X_B \delta_{AB} + X_B^2 \delta_B^2}$
 ✓ Present Value of a Single Cash Flow 	$PV = \frac{FV_n}{(1+i)^n}$
 ✓ Present Value of Annuity Due 	$PVAD = PMT \left[\frac{1 - \frac{1}{(1+i)^n}}{i} \right] (1+i)$
 ✓ Present Value of Ordinary Annuity 	$PVOA = PMT \left[\frac{1 - \frac{1}{(1+i)^n}}{i} \right]$
✓ Security return correlation	$\rho_{AB} \frac{Cov_{R_A,R_B}}{\sigma_A \times \sigma_B}$ $Cov_{R_A,R_B} = \sum P_i (R_A - \bar{R}_A) (R_B - \bar{R}_B)$
 ✓ Security return covariance 	or
✓ Value of the Levered firm	$V_L = \frac{EBIT(1 - T_C)}{r_0} + T_C B$
✓ Value of the Unlevered Firm	$\sum \frac{(R_A - \bar{R}_A)(R_B - \bar{R}_B)}{N}$ $V_L = \frac{EBIT(1 - T_C)}{r_0} + T_C B$ $V_u = \frac{EBIT(1 - T_C)}{r_0}$

////END/////