

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR THIRD YEAR FIRST SEMESTER

SCHOOL OF BUSINESS AND ECONOMICS BACHELOR OF SCIENCES IN FINANCIAL ECONOMICS

COURSE CODE: ECF 3104
COURSE TITLE: THEORY OF FINANCE

DATE: $\quad \mathbf{2 8}^{\text {TH }}$ MARCH, 2022
TIME: 0830-1030

INSTRUCTIONS TO CANDIDATES

1. Answer Question ONE and any other three questions

Question I

a) Define the following terms as used in finance:
i) Moral hazards
ii) Primary financial markets
iii) Information asymmetry
iv) Idiosyncratic risk
v) Holding period return
(1 mark)
b) Suppose a three-factor model is appropriate to describe the returns of a stock. Information about those three factors is presented in the following chart. Suppose this is the only information you have concerning the factors.

Factor	Beta of Factor	Expected Value	Actual Value
GNP	0.0042	$\$ 4,416$	$\$ 4,480$
Inflation	-1.40	3.1%	4.3%
Interest Rate	-0.67	9.6%	11.8%

i) What is the systematic risk of the stock return? (3 marks)
ii) Interpret the GNP beta, and interest rate beta
iii) Suppose an unexpected bad news about the firm was (1 mark) announced that dampens the returns by 2.6 percentage points.
What is the unsystematic risk of the stock return?
iv) Suppose the expected return of the stock is 9.5 percent. What is (2 marks) the total return on this stock?
c) Explain any 3 potential solutions to agency conflicts in the public (6 marks) sector.
d) Discuss any 2 differences between the Capital Asset Pricing Model (6 marks) (CAPM) and the Arbitrage Pricing Theory (APT)

Question 2

a) Jensen and Meckling (1976) in the Agency Theory explain a number of ways in which agency conflicts may arise. Explain any 3 of these ways.
b) Explain any 3 aspects of agency costs
c) Define the three forms of market efficiency

Question 3

a) Differentiate between dividend yield and percentage return on a stock investment
b) Suppose a stock begins the year with a price of $\$ 25$ per share and ends with a price of $\$ 35$ per share. During the year it paid a $\$ 2$ dividend per share. What are its dividend yield, its capital gain, and its total return for the year?
c) The returns on the market of common stocks and on Treasury bills are contingent on the economy as follows

Economic Condition	Probability	Market Return (\%)	Treasury Bills (\%)
Recession	0.25	-8.2	3.5
Normal	0.50	12.3	3.5
Boom	0.25	25.8	3.5

i) Calculate the expected returns on the market and Treasury (2 marks) bills
ii) Calculate the expected risk premium (1 mark)
d) The returns on the small-company stocks and on the blue-chip company stocks from 2016 through 2020 are tabulated below.

Year	Small-Company Stocks (\%)	Blue-Chip Company Stocks (\%)
2016	47.7	40.2
2017	33.9	64.8
2018	-35.0	-58.0
2019	31.0	32.8
2020	-0.5	0.4

i) Calculate the average return for the small-company stocks (2 marks) and the Blue-Chip Company stocks.
ii) Calculate the variance and standard deviation of returns (5 marks) for the small-company stocks and the Blue-Chip Company stocks.

Question 4

a) Draw the security market line for the case where the market-risk premium is 5 percent and the risk-free rate is 7 percent.
b) Suppose that an asset has a beta of -1 and an expected return of 4 percent
i) Plot it on the graph you drew in part (a)
ii) Is the security properly priced? If not, explain what will happen (1 mark) in this market.
c) Suppose you have invested $\$ 30,000$ in the following four stocks:

Security	Amount Invested (\$)	$\underline{\text { Beta }}$
Stock A	5,000	0.75
Stock B	10,000	1.10
Stock C	8,000	1.36
Stock D	7,000	1.88

The risk-free rate is 4 percent and the expected return on the market portfolio is 15 percent. Based on the CAPM, what is the expected return on the above portfolio?

Question 5

a) You own stock in Vertex Pharmaceuticals (a Covid-19 vaccine manufacturing company). Explain what would occur to the stock prices in the event that the following hypothetical events occurred.
i) The president of the firm would announce her retirement. The (2 marks) retirement would be effective six months from the announcement day. The president is well liked: in general, she is considered an asset to the firm
ii) Lab researchers had a breakthrough with another drug that increases the company's products portfolio.
iii) Interest rates would rise 2.5 percentage points. The returns of Vertex Pharmaceuticals are negatively related to interest rates.
iv) A competitor announced that it will begin distribution and sale of a medicine that will compete directly with one of Le Vertex Pharmaceuticals' vaccine.
v) In an ordinary sitting of the African Union presidents, a consultant demonstrates how effective the vaccine is and promotes its use.
b) You are conducting a cumulative average residual study on the effect of airline companies' buying new planes. The announcement dates for the purchase of the planes were July $18(7 / 18)$ for Delta, February 12 (2/12) for United, and October 7 (10/7) for American. Construct a cumulative abnormal return (CAR) for these stocks as a group, chart it, and explain it. All stocks have a beta of 1

Delta			United			American		
Date	Market Return	Company Return	Date	Market Return	Company Return	Date	Market Return	Company Return
$7 / 12$	-0.3	-0.5	$2 / 8$	-0.9	-1.1	$10 / 1$	0.5	0.3
$7 / 13$	0.0	0.2	$2 / 9$	-1.0	-1.1	$10 / 2$	0.4	0.6
$7 / 16$	0.5	0.7	$2 / 10$	0.4	0.2	$10 / 3$	1.1	1.1
$7 / 17$	-0.5	-0.3	$2 / 11$	0.6	0.8	$10 / 6$	0.1	-0.3
$7 / 18$	-2.2	1.1	$2 / 12$	-0.3	-0.1	$10 / 7$	-2.2	-0.3
$7 / 19$	-0.9	-0.7	$2 / 15$	1.1	1.2	$10 / 8$	0.5	0.5
$7 / 20$	-1.0	-1.1	$2 / 16$	0.5	0.5	$10 / 9$	-0.3	-0.2
$7 / 23$	0.7	0.5	$2 / 17$	-0.3	-0.3	$10 / 10$	0.3	0.1
$7 / 24$	0.2	0.1	$2 / 18$	0.3	0.3	$10 / 13$	0.0	-0.1

SOME FINANCIAL ECONOMICS FORMULAE

| \checkmark APT Model | $\boldsymbol{R}=\overline{\boldsymbol{R}+\boldsymbol{m}+\boldsymbol{\epsilon}}$ |
| :---: | :---: | :---: |
| \checkmark Beta | $\boldsymbol{\beta}_{\boldsymbol{i}}=\frac{\boldsymbol{\operatorname { C o v } (\boldsymbol { R } _ { \boldsymbol { i } } , \boldsymbol { R } _ { \boldsymbol { M } })}}{\boldsymbol{\sigma}^{2}\left(\boldsymbol{R}_{\boldsymbol{M}}\right)}$ |
| \checkmark CAPM | Expected return $=r_{f}+\beta\left(r_{m}-r_{f}\right)$ |
| | Where: $r_{f}=$ risk - free rate, $\beta=$ |
| | beta, and $r_{m}=$ return on the market |

\checkmark Expected Portfolio Return	$\left(\hat{R}_{P}\right)=W_{1} X_{1}+W_{2} X_{2}+\cdots+W_{n} X_{n} \equiv \sum_{i=1}^{n} W_{i} X_{i}$
\checkmark Future value of a Single Cash Flow	Future value $=P V(1+r)^{n}$
\checkmark Future Value of an Annuity Due	$F V A N D=P M T\left[\frac{(1+i)^{n}-1}{i}\right](1+i)$
\checkmark Future Value of an Ordinary Annuity ($\mathrm{FVAN}_{\mathrm{n}}$)	$\operatorname{FVAN}_{n}=P M T\left[\frac{(1+i)^{n}-1}{i}\right]$
\checkmark Portfolio Standard Deviation	$\delta($ portfolio $)=\sqrt{X_{A}^{2} \delta_{A}^{2}+2 X_{A} X_{B} \delta_{A B}+X_{B}^{2} \delta_{B}^{2}}$
\checkmark Present Value of a Single Cash Flow	$\mathrm{PV}=\frac{F V_{n}}{(1+i)^{n}}$
\checkmark Present Value of Annuity Due	$P V A D=P M T\left[\frac{1-\frac{1}{(1+i)^{n}}}{i}\right](1+i)$
\checkmark Present Value of Ordinary Annuity	$P V O A=P M T\left[\frac{1-\frac{1}{(1+i)^{n}}}{i}\right]$
\checkmark Security return correlation	$\rho_{A B} \frac{\operatorname{Cov}_{R_{A}, R_{B}}}{\sigma_{A} \times \sigma_{B}}$
\checkmark Security return covariance	$\begin{gathered} \operatorname{Cov}_{R_{A}, R_{B}}=\sum P_{i}\left(R_{A}-\bar{R}_{A}\right)\left(R_{B}-\bar{R}_{B}\right) \\ \text { or } \\ \sum \frac{\left(R_{A}-\bar{R}_{A}\right)\left(R_{B}-\bar{R}_{B}\right)}{N} \end{gathered}$
\checkmark Value of the Levered firm	$V_{L}=\frac{E B I T\left(1-T_{C}\right)}{r_{0}}+T_{C} B$
\checkmark Value of the Unlevered Firm	$V_{u}=\frac{E B I T\left(1-T_{C}\right)}{r_{0}}$

