

MAASAI MARA UNIVERSITY REGULAR UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR THIRD YEAR FIRST SEMESTER SCHOOL OF PURE APPLIED AND HEALTH SCIENCES BACHELOR OF SCIENCE IN CHEMISTRY

COURSE CODE: CHE 3121
COURSE TITLE: CHEMICAL THERMODYNAMICS AND PHASE EQUILIBRIA

INSTRUCTIONS TO CANDIDATES

1. Answer Question ONE and any other TWO questions.
2. All Examination Rules Apply.

QUESTION ONE (30MKS)

a) Define the triple point and state its significance
b) Explain one property that affects vapour pressure (2mks)
c) Describe and give one example of a metastable phases (2mks)
d) Calculate the change in entropy when 25 kJ of energy is transfered reversibly and isothermally as heat to a large block of iron at $100^{\circ} \mathrm{C}$ (3mks)
e) Describe a phase transition (2mks)
f) Sketch a phase diagram and illustrating the regions of various phases (4mks)
g) Calculate the standard reaction enthalpy and the change in standard Gibbs energy for the combustion of methane which follows the reaction $\mathrm{CH}_{4(\mathrm{~g})}+$ $2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})}$
$\Delta_{\mathrm{f}} \mathrm{H}^{\ominus}\left(\mathrm{CH}_{4(\mathrm{~g})}\right)=-74.81 \mathrm{kJmol}^{-1}$,
$\Delta_{\mathrm{f}} \mathrm{H}^{\ominus}\left(\mathrm{O}_{2(\mathrm{~g})}\right)=0 \mathrm{kJmol}^{-1}$
$\Delta_{\mathrm{f}} \mathrm{H}^{\ominus}\left(\mathrm{CO}_{2(\mathrm{~g})}\right)=-393.51 \mathrm{kJmol}^{-1}$
$\Delta_{\mathrm{f}} \mathrm{H}^{\ominus}\left(\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right)=-285.83 \mathrm{kJmol}^{-1}$
$\Delta_{\mathrm{r}} \mathrm{S}^{\ominus}=-243 \mathrm{JK}^{-1}$ (6mks)
h) For an adiabatic change, $\Delta \mathrm{S}_{\mathrm{sur}}=0$. Explain. (3mks)
i) Calculate the entropy change in the surroundings for an isothermal reversible change at constant pressure when $1.00 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ is formed from its elements under standard conditions at 298 K given that $\Delta H^{\ominus}=-290$ kJ. (3mks)
j) State two distinctions between normal boing point and standard boiling point.
(2mks)

QUESTION TWO (20MKS)

a) Calculate the entropy change in the system when $1.00 \mathrm{~mol} \mathrm{OF}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is formed from $2.00 \mathrm{~mol} \mathrm{NO}_{2}(\mathrm{~g})$ under standard conditions at 298 K given that the enthalpy change for the reaction is $57.20 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad$ (3mks)
b) Calculate the molar entropy of a constant-volume sample of argon at 250 K given that it is $154.84 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ at 298 K . ($\mathrm{C}_{\mathrm{v}}=20.786$) (3mks)
C) Calculate ΔS (for the system) when the state of 2.00 mol diatomic perfect gas molecules, for which $C_{p, \mathrm{~m}}=7 / 2 R$, is changed from $25^{\circ} \mathrm{C}$ and 1.50 atm to $135^{\circ} \mathrm{C}$ and 7.00 atm . How do you rationalize the sign of ΔS. (6 mks)
d) Calculate the standard reaction Gibbs energy of the reaction $\mathrm{Hg}(\mathrm{I})+\mathrm{Cl}_{2}(\mathrm{~g})$ $\rightarrow \mathrm{HgCl}_{2}(\mathrm{~s})$ given; $\Delta_{\mathrm{f}} \mathrm{G}^{\theta}(\mathrm{Hg}(\mathrm{I}))=0 \mathrm{Kjmol}^{-1} \Delta_{\mathrm{f}} \mathrm{G}^{\theta}\left(\mathrm{Cl}_{2}(\mathrm{~g})\right)=0 \mathrm{Kjmol}^{-1}, \Delta_{\mathrm{f}} \mathrm{G}^{\theta}($ $\left.\mathrm{HgCl}_{2}(\mathrm{~s})\right)=-178.60 \mathrm{Kjmol}^{-1}$.
e) Suppose that for a certain phase transition of a solid, $\Delta_{\mathrm{trs}} \mathrm{V}=+1.0 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ which is dependent on pressure and an increase in pressure to 3.0 Mbar $(3.0 \times 1011 \mathrm{~Pa})$ from $1.0 \mathrm{bar}(1.0 \times 105 \mathrm{~Pa})$ occurs. Calculate the change in Gibb's energy for the transition if the transition temperature is 300 K .
(3mks)
f) A phase transition is accompanied by change in entropy. Explain. (3mks)

QUESTION THREE (20mks)

a) Define and explain the formation of a supercritical fluid (4mks)
b) Predict the enthalpy of vaporizations of ethane and bromine molecules from their boiling points of $-88.6^{\circ} \mathrm{C}$. and $59.2^{\circ} \mathrm{C}$ respectively. Given that they follow the Trouton rule.
c) Explain why water and methane deviate from the Trouton rule. (4mks)
d) Calculate the standard Gibbs energy of the reaction $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})+\mathrm{CO}(\mathrm{g}) \rightarrow$ $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})$ at 298 K given; $\Delta_{\mathrm{f}} \mathrm{H}^{\theta}\left(\mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})\right)=-238.66 \mathrm{Kjmol}^{-1}, \Delta_{\mathrm{f}} \mathrm{H}^{\theta}(\mathrm{CO}(\mathrm{g}))=$ $-393.51 \mathrm{Kjmol}^{-1}, \quad \Delta_{\mathrm{f}} \mathrm{H}^{\theta}\left(\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})\right)=-484.5 \mathrm{Kjmol}^{-1}, \Delta_{\mathrm{f}} \mathrm{S}^{\theta}\left(\mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})\right)=126.8$ $\mathrm{Jmol}^{-1} \mathrm{~K}^{-1} \quad, \Delta_{\mathrm{f}} \mathrm{S}^{\theta}(\mathrm{CO}(\mathrm{g}))=213.74 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}, \Delta_{\mathrm{f}} \mathrm{S}^{\theta}\left(\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})\right)=159.8 \mathrm{Jmol}^{-}$ ${ }^{1} \mathrm{~K}^{-1}$
e) Explain with an example what is meant by a state function.
(2mks)

QUESTION FOUR (20mks)

a) Estimate the change in Gibbs energy of $1 \mathrm{dm}^{-3}$ of benzene when the pressure acting on it is increased from 1atm to 100atm (3mks)
a) Calculate the standard reaction entropy of the reaction: $\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$ $\rightarrow \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})$ at $25^{\circ} \mathrm{C}$ and state the significance of the entropy value given: $\Delta_{f} S^{\circ}{ }_{\mathrm{m}}\left(\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{g})\right)=250.3 \mathrm{~J} \mathrm{~K}^{-1}, \Delta_{\mathrm{f}} S_{\mathrm{m}}^{\circ}\left(\mathrm{O}_{2}(\mathrm{~g})\right)=205.14 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ and $\Delta_{f} S_{\mathrm{m}}^{\circ}\left(\mathrm{H}_{3} \mathrm{COOH}(\mathrm{I})\right)=159.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.
(4mks)
b) The standard enthalpy of combustion of solid Urea $\left(\mathrm{CO}\left(\mathrm{NH}_{2}\right)\right.$ is $-632 \mathrm{Kjmol}^{-1}$ at 298 K and its standard molar entropy is $104.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. Calculate the standard Gibbs energy of the formation of urea (4mks)
c) The equation for the ionization of silver and chlorine is given as, $\mathrm{Ag}(\mathrm{s})+1 / 2$ $\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$. If $\Delta_{\mathrm{r}} G^{\vartheta}=-54.12 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta_{\mathrm{f}} \mathrm{G}^{\vartheta}(\mathrm{Ag}+, \mathrm{aq})=$ $+77.11 \mathrm{~kJ} \mathrm{~mol}^{-1}$, Calculate the standard Gibbs enrgy of formation of chloride ions
(3mks)
d) Calculate the change in the molar Gibbs energy of water vapour (treated as a perfect gas) when the pressure is increased isothermally from 1.0 bar to 2.0 bar at 298 K (3mks)
e) Define the following terms as used in phase equilibria:
i) Phase
ii) Boiling
iii) Boiling point.
(3mks)
END//

