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Abstract: Kenya is among the countries that are continuously investing in wind energy to meet her electricity demand. 

Kenya is working towards its vision 2030 of achieving a total of 2GW of energy from wind industry. To achieve this, there is a 

need that all the relevant data on wind characteristics must be available. The purpose of this study is, therefore, to find the most 

efficient two-parameter model for fitting wind speed distribution for Narok County in Kenya, using the maximum likelihood 

method. Hourly wind speed data collected for a period of three years (2016 to 2018) from five sites within Narok County was 

used. Each of the distribution’s parameters was estimated and then a suitability test of the parameters was conducted using the 

goodness of fit test statistics, Kolmogorov-Smirnov, and Anderson-Darling. An efficiency test was determined using the 

Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion (BIC) values, with the best decision taken based 

on the distribution having a smaller value of AIC and BIC. The results showed that the best distributions were the gamma 

distribution with the shape parameter of 2.47634 and scale parameter of 1.25991, implying that gamma distribution was the 

best distribution for modeling Narok County wind speed data. 
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1. Introduction 

Wind speed distribution characteristics refer to the wind 

speed parameters like the mean, variance, standard deviation, 

and covariance. These parameters vary from place to place 

depending on various factors like the length of data observed, 

the site of the experiment, and the time of observing the wind 

speed data among others. Therefore, there is a need to study 

the variations of these parameters for any given specific 

geographical site before installing the wind plant. This is only 

possible if there is an approved statistical distribution that has 

been examined and recommended for the site or region of 

interest. Many types of research have come out to model wind 

speed using different statistical distributions like log-normal 

distribution, Weibull distribution, gamma distribution, 

Rayleigh distribution, and Erlang distribution among others in 

most parts of the world with a good quantity of wind but not 

showing great interest in Kenya even if Kenya is stated as one 

of the countries in Africa with the best wind [4, 16]. 

In Kenya, Narok is one of the regions with plenty of wind 

making it one of the places with the potential of generating 

more wind energy [16]. To achieve this, the investors and the 

wind industry needs to understand the wind speed 

characteristics of this region. This is because the wind speed is 

the most significant factor in the installation process of any 

wind plant. Hence there is a need to have complete 

information about wind speed characteristics. This can only be 

possible by having a recommended statistical distribution for 

examining the wind speed data. There are existing statistical 

distributions for studying wind speed data for a different 

specific region but the problem is that among the existing wind 

speed distributions there is no underlying distribution for 

examining Narok county wind speed characteristics. Therefore, 

leaving the wind industry and other investors with incomplete 
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knowledge on the suitable distribution for examining Narok 

region wind data leading less interest since they are lacking a 

control tool for their study. Therefore, this research fills this 

gap by analyzing the hourly wind speed data of Narok county 

using the maximum likelihood by fitting the two-parameter 

statistical distributions of Weibull, log-normal and gamma, to 

enables us to choose the suitable distribution among the three 

that fits the data perfectly and efficiently to help for studying 

wind speed characteristics of Narok county. 

The two-parameter distributions used are represented as 

follows. 

1.1. Weibull Distribution 

A study carried by [1, 2, 6, 17] on the Weibull distribution 

to analyze wind speed concluded that the Weibull distribution 

function is the best in estimating the parameters of wind 

speed. The Weibull distribution model applied by the study is 

given by; 
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Where: 

f(u) is the probability of observing wind speed. 

u is the wind speed. 

b is the shape factor (parameter) which has no unit but 

range from 1.5 to 3.0 for most wind conditions 

p is the value in the unit of wind speed called the Weibull 

scale parameter in m/s. 

1.2. Lognormal Distribution 

In studies by [3, 13, 18] they did wind speed analysis and 

one of the statistical distributions they used in examining the 

wind data was the log-normal statistical model with 

parameters v and k. The log-normal density function with the 

two parameters is given by: 

( )2

2

1
( ) exp

2 2

ln
f p

k p

p v

kπ
=

−
               (2) 

Where: 

p is the log-normal random variable 

ln(p) is the normal random variable 

v is the mean for a normal random variable 

k is the standard deviation for the normal random variable 

1.3. Gamma Distribution 

The probability density function of gamma random 

variable y in combination with two parameters z and q 

representing the shape and scale parameters respectively is 

given by [10, 12, 19]. 

( )
( )

1

exp

( , , ) , , , , 0

z

z

y

q
f y z q z y q

z

y

q

−  
− 
 = >

Γ
              (3) 

The Γ is defined by 
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Where: 

z is the shape parameter 

q is the scale parameter 

y are the random variables (wind speed) 

2. Methods 

2.1. Maximum Likelihood Estimation Method (MLE) 

According to [21], the maximum likelihood estimation 

method can be applied in many problems since it has a strong 

intuitive appeal and it yields a reasonable estimator. He also 

stated that the maximum likelihood estimation method is 

widely used because it is more precise especially when 

dealing with large samples since it yields an excellent 

estimator when the sample is large. According to [9, 15] it is 

stated that a maximum likelihood function let us say ��  of M 

is a solution to the maximization problem given as. 

�� = �����	 ��(�: 	1, 	2, … … , 	�)           (4) 

Where X1,...., XN represents the wind speed observations. 

Under suitable regularity conditions, the first-order condition 

is given as 
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These conditions are generally called the likelihood or log-

likelihood equations. The first derivative or gradient of a 

condition (log-likelihood) solved at the point ��  satisfies the 

following equation 
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The log-likelihood equation that corresponds to a linear or 

non-linear system of P equations with P unknown parameters 

M1,... MP is given by 
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Maximum likelihood estimation is a recommended 

technique for many distributions because it uses the values of 

the distribution’s parameters that make the data more likely 
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than any other parameter. This is achieved by maximizing the 

likelihood function of the parameters given the data. some 

good features of maximum likelihood estimators are that they 

are asymptotically unbiased since the bias tends to zero as the 

sample size increases and also, they are asymptotically 

efficient since they achieve the Cramer-Rao lower bound as 

sample size approaches ∞ and lastly they are asymptotically 

normal. 

2.2. Maximum Likelihood Estimation for Weibull 

Distribution 

For the two-parameter distributions, the shape parameter is 

dimensionless and shows how peak the site under 

examination is and the scale parameter is to show how windy 

the site under examination is. This research used the Weibull 

two-parameter distribution for the wind speed analysis which 

is given in equation (1), [1, 11]. 

According to [7], the two constants, shape and scale 

parameters are positive, the scale parameter scales u variable 

(wind speed variable) and the shape parameter decides the 

shape of the rate function, �(�) = ��
�� ��

��
���

. If the shape 

parameter b, is less than 1, then the rate is decreasing with u. 

Whereas if the shape parameter is greater than 1, then the rate 

is increasing with u and if the shape parameter = 1, then the 

rate is said to be constant, and in this case, the Weibull 

distribution is said to be the exponential distribution. 

Suppose that ��,��, … . . , �!  are independent and 

identically distributed Weibull random variables representing 

the wind speed with a probability density function f(u) given 

in the equation (1) where the two parameters are assumed to 

be unknown. To estimate the parameters using the maximum 

likelihood method, the likelihood function of ��,��, … . . , �! 

can be formulated from equation (1) as 
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By taking the natural logarithm transformation, we have 

the equation 
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Differentiating ln L (p, b) with respect to p, we obtain 
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Differentiating ln L (p, b) with respect to b, we obtain 
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Equating equations (10) and (11) to zero gives the 

maximum likelihood estimates "#̂, %&' of (p, b). The estimate 

for #̂ is as shown 
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The estimate for %& is obtained as shown below 
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Equations (3.10) and (3.11) can be solved simultaneously 

for %& which also obtains #̂ subsequently. 

2.3. Maximum Likelihood Estimation for Lognormal 

Distribution 

According to [5], the density function for the two-parameter 

lognormal distribution is given as in equation (2), [2, 13]. 

To compute the maximum likelihood, we obtain the 

likelihood function first for equation (2). The likelihood 

function of lognormal distribution for a series of #()(* =
1, 2, … . , �) is derived by taking the product of the probability 

density of the individual #() given as below. 
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We then derive the likelihood function by taking the 

natural logarithm 
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We find +,  and -& �  which maximizes .��(+, -�) . To find 

this, we differentiate equation (15) with respect to v and -� 

by setting the equation equal to 0: with respect to v, we 

obtain 
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With respect to -& �, we obtain, 

( )
( )( ) ( )

2

2
2 1

2 2

1
ln ,

2 2

2
ln

n

in
L v

i
vp

k k
k k

=∂ = − −
∂

−∑
−  

( )( )
( )

2

1

2 2
0

2
2

2

ln
n

in i
vp

k k

== − + =
−∑

 

( )( )2

1

2 4
2 2

ln
n

in i
vp

k k
=⇒ =

−∑
 

( )( )2

1

2

ln
n

in
i

vp

k
=⇒ =

−∑
 

( )( )2

2 1

ln
n

i

n

i
vp

k
=⇒ =

−∑
 

( )
( )

2

1

2

1
ln

ln
n

i

n

n

i
i

i

p
p

n

k

=

⇒ =

∑
=

 
 −∑ 
 
 

  (17) 

2.4. Maximum Likelihood Estimation for Gamma 

Distribution 

In this section, we considered also a gamma distribution 

with shape parameter and scale parameter since it is the 

distribution that is widely used in real-life data sets. The 

probability density function of gamma random variable y in 

combination with two parameters z and q representing the 

shape and scale parameters respectively is given in equation 

(3), [10, 19]. 

For maximum likelihood estimation, we first get the 

likelihood function which is given by [14] 
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The log of the likelihood function is given by 
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To find the maximum likelihood estimates for 1̂ and / 2  for 

z and q, we equate equation (19) to zero and then find out the 

partial derivatives with respect to 1̂ and /, respectively. 
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With respect to /, and setting the equation equal to 0: we 

get, 
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2.5. Goodness of Fit Test 

After analyzing the data using the three statistical 

distribution, it is important to verify the suitability and the 

accuracy of the distribution by performing the goodness of fit 

test which simply tells you how good the distributions fit the 

data. Several tests will be used to analyze the suitability of 

the three distribution namely gamma, Weibull, and log-

normal distribution to help have the most precise and reliable 

distribution. The goodness of fit test was examined using the 

following metrics namely the Kolmogorov-Smirnov test and 

Anderson-Darling test. And the goodness test criteria will be 

examined using Akaike’s Information Criterion and Bayesian 

Information Criterion. Kolmogorov-Smirnov test 

This is a two-sample test with the advantage that it does 

not depend mostly on the underlying cumulative distribution 

function being tested and also applies only to continuous 

distributions which in this case vis applicable since we are 

only investigating the continuous statistical distributions. It is 

calculated as, 

( )*

1 2
max ( ) ( )t tD F F= −                   (22) 

Where: 

3�(4) is the proportion of t1 values less than or equal to t 

3�(4) is the proportion of t2 values less than or equal to t 

56: The data follows a specified distribution 

5�: The data do not follow the specified distribution 

The smaller the test statistic the better the fit. 

2.5.1. Akaike’s Information Criterion (AIC) 

The Akaike’s Information Criterion is calculated as  

2log ( ) 2AIC L p w= − +                       (23) 

Where log L(P) defines the value of the maximized log-

likelihood objective function for a model with w parameters. 

A smaller AIC value represents a better fit. 

2.5.2. Bayesian Information Criterion (BIC) 

The Bayesian Information Criterion is calculated as 

2log ( ) logBIC L p w M= − +                   (24) 

Where log L(P) represents the values of the maximized 

log-likelihood objective function for a model with w 

parameters fit M data points. A smaller Bayesian Information 

Criterion value indicates a better fit (best model for fitting the 

data) 

2.6. Efficiency Test 

An estimator is said to be more efficient than another 

estimator if it is more reliable and precise for the same 

sample size. For the research to achieve part of its specific 

objectives, there is a need to understand how efficiency test is 

carried out. This will be done using the comparison between 

the Akaike’s Information Criterion and the Bayesian 

Information Criterion for the two distributions whereby the 

distribution with the smallest Akaike’s and Bayesian 

Information Criterion values will be picked as the best. 
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3. Results 

3.1. Descriptive Analysis for Two-parameter Distribution 

The minimum speed in the data is 0.12 m/s and the 

maximum speed is 5.35 m/s with the mean speed of 1.9658 

m/s and the estimated standard deviation of 1.2407 m/s. The 

estimated kurtosis and skewness are 2.8094 and 0.8433. 

Figure 1 shows the data distribution for 63778 observations 

free from outliers. 

 

Figure 1. Box plot. 

Table 1 shows the summary statistics. 

Table 1. Summary statistics. 

Min value 0.12 

Max value 5.35 

Mean 1.965777 

Median 1.62 

Estimated std 1.24065 

Estimated kurtosis 2.809401 

Estimated skewness 0.8433485 

 

Figure 2. Histogram and cumulative curve. 

From Figure 2, it can be observed that the distribution of 

the data is positively skewed since the peak of the data is 

towards the left and the right tail is longer. This shows that 

the data is not perfectly symmetrical since the skewness is 

not equal to or close to zero. From the cumulative 

distribution, it can be seen that the probability of having a 

wind speed of less than 4 m/s is almost 0.8. Meaning that the 

observed wind speeds above 4 m/s are less compared to those 

below 4 m/s. 

 

Figure 3. Data explanation. 

Figure 3, is used to show a skater plot of kurtosis and 

skewness. This graph helps in understanding the best 

possible distribution or distributions that are or are fitting 

the data. From the graph, we can observe that the plot is can 

be estimated at around a kurtosis of 2.8 and a square of 

skewness of around 0.7 (skewness = 0.8). With a skewness 

of 0.8 and kurtosis of 2.8, we can conclude that the normal 

distribution cannot fit the data best since normal 

distribution requires that kurtosis = 3 and skewness = 0. 

The uniform distribution is not also the best distribution for 

fitting this data since the observed difference between the 

scatter plot of kurtosis and square of skewness and that of 

the uniform distribution is not that close (for a uniform 

distribution needs a kurtosis value of 1.8 and skewness 

value of 0). For the logistic distribution, we can say that it 

is also not the best for the data since logistic distribution 

always has a kurtosis of 4.2 and skewness value = 0 and 

from the graph, it can be observed that the logistic plot is 

not closer to the data plot. For the exponential distribution, 

we can observe that its point is far away from the data point, 

this is because exponential distribution is expected to have 

a kurtosis of 9 and skewness of 2 compared to the data 

point skewness of 0.7 therefore exponential distribution is 

not the best for the data. From the graph, it can be seen that 

beta distribution can fit the data but this distribution cannot 

be applied to the data since beta distribution is a family of 



63 Okumu Otieno Kevin et al.:  Fitting Wind Speed to a Two Parameter Distribution Model Using Maximum  

Likelihood Estimation Method 

continuous probability distributions defined on the interval 

of [20, 1] which is not the case with the collected data for 

this research. From the graph, log-normal and gamma 

distributions can fit the data best because they appear to be 

close to the data points and well distributed. Weibull 

distribution is also another good distribution for fitting the 

data since from the graph it is said that Weibull is close to 

gamma and log-normal. 

3.2. Two Parameter Estimates 

Table 2 shows each distribution with its estimated 

parameters, standard error of the parameters, and their 

correlations coefficients. 

Table 2. Parameter estimates. 

Distribution Parameter Estimate Std Error Correlation 

Weibull 
Shape 1.669565 0.005108 

0.32456 
Scale 2.210888 0.005544 

Gamma 
Shape 2.47634 0.013041 

0.902297 
Scale/rate 1.25991 0.007354 

Log-normal 
Shape 0.460632 0.002730 

-5.753411xe-11 
Scale 0.689522 0.001931 

From table 2, we can see that Weibull's two parameters 

namely shape and scale parameters have a weak positive 

correlation. Gamma parameters are also positively correlated 

with a strong positive correlation of 0.9. The log-normal two 

parameters show a weak negative correlation. It is very 

important to examine if the estimated values of the 

parameters are useful in predicting wind speed. This can be 

done by investigating the significance of each of the 

parameters under each distribution. This is achievable by 

applying the t-test with the test statistic given as 

4∗ =  8)9(:;9<=�>;=;:?9?=
@9;!A;=A 8==<=                            (25) 

The appropriate hypothesis test about the adequacy is given 

as 56: Estimator = 0 versus 5�: Estimator ≠ 0. We reject 56 if 

the t statistic value is greater than t (table) value. In this case, 

we use 1.96 as the t table value since our sample size is above 

1000 and we assume that the parameter value = 0. 

Table 3. Significance test for parameters. 

Distribution Parameter Estimate 
Std 

Error 
t stat 

t 

value 

Weibull 
Shape 1.669565 0.005108 326.853 

1.96 
Scale 2.210888 0.005544 398.7893 

Gamma 
Shape 2.47634 0.013041 189.8888 

1.96 
Scale/rate 1.25991 0.007354 171.3231 

Log-normal 
Shape 0.460632 0.002730 168.7297 

1.96 
Scale 0.689522 0.001931 357.0803 

From table 3, all the t statistic values are greater than the 

table value (1.96) therefore we reject the null hypothesis and 

conclude that all the distributions and the data are useful in 

predicting the wind speed of the Narok region since the 

estimated parameters are all not equal to zero. 

To get the best distribution among the three, we can use 

either graphical analysis or goodness of fit analysis 

3.3. Test of Goodness of Fit 

The discussion here will help us to the best distribution that 

can be applied to study the wind speed data of Narok county. 

The conclusion will depend on the values of Akaike’s 

Information Criterion (AIC) and Bayesian Information 

Criterion (BIC). The model with the smaller value for both the 

AIC and BIC is considered the best distribution for the study. 

Table 4. Goodness of fit statistics. 

Statistics Weibull Log-normal Gamma 

Kolmogorov-Smirnov 0.05372 0.038854 0.036181 

Anderson-Darling 365.758263 189. 673705 211.647056 

Table 4 shows that one or more distribution (s) can be used 

to fit the Narok region wind speed data since the data follows 

all the three distributions. This is evidenced from the first 

three statistics namely Kolmogorov-Smirnov, Cramer-von 

Mises, and Anderson-Darling test. This is because these three 

statistics are used to investigate if the applied data follows a 

certain specified distribution. Since the two statistics, 

Anderson-Darling and Cramer-von Mises are the refinements 

of the Kolmogorov-Smirnov (K-S) test, we can use either of 

them to make a decision. Therefore, using the Kolmogorov-

Smirnov statistic it can be concluded that the data follow 

gamma distribution and log-normal distribution since the 

critical values for Kolmogorov-Smirnov is 0.0430. Because 

gamma and lognormal has the smaller KS statistic values of 

0.036181 and 0.038854 compared to the KS critical value, 

we fail to reject the null hypothesis of the other two 

distributions. 

Table 5. Goodness of fit criteria. 

Criteria Weibull Lognormal Gamma 

AIC 191777.5 192340.2 190407.2 

BIC 191795.7 192358.4 190425.3 

From table 5, the AIC and BIC values in the table, it can 

be observed that the gamma distribution has the lower values 

for both the AIC (190407.2) and BIC (190425.3) tests. This 

is a clear indication that gamma distribution is the best 

among the three distributions for fitting the Narok wind 

speed data with the shape parameter of 2.47634 and scale 

parameter of 1.25991. 

4. Conclusion 

From the analysis, we can conclude that using maximum 

likelihood estimation method, gamma distribution with two 

parameters is the best distribution for fitting wind speed data 

since it yields lower AIC and BIC values. The scale 

parameter which shows how windy the site under study is, is 

estimated by the value 1.25991 and the shape parameter how 

peak the site is, is estimated by the value 2.47634. Therefore, 

the gamma distribution is the efficient distribution for 

studying how windy and/or peaked the region or site under 

examination is. The distribution is given as: 
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D(E) =  FG.HIJKHLM?N��� O
M.GPQQM�

R(�.STUVS)�.�WXX�G.HIJKH , (E > 0)           (26) 

5. Recommendation 

We recommend that for the investors or wind industry 

interested in studying and/or predicting the Narok wind speed, 

they should use the gamma distribution since it will give the 

best wind speed probabilities compared to the other form of 

distributions. We also recommend to researchers, investors, 

and wind industries to apply the gamma distribution in the 

examination of wind speed distribution in the other 

regions/parts of the country with good wind quantity like 

Loitoktok, Marsabit, etc and also in other parts of the world. 
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