

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR FOURTH YEAR *SECOND* SEMESTER

SCHOOL OF SCIENCE

BACHELOR OF SCIENCE IN PHYSICS AND BACHELOR OF EDUCATION (SCIENCE)

COURSE CODE: PHY 416 COURSE TITLE: ATOMIC AND NUCLEAR PHYSICS

DATE: 26TH APRIL 2019

TIME: 11.00 AM - 1.00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question **ONE** and any other **TWO** questions

(4 marks)

Question One

- i) State the basic Postulates according to Bohr.
- ii) i) The electron in a hydrogen atom make a transition from n = 2 energy level to the ground level (n = 1). Find the wavelength and frequency of the emitted photon.

(3 marks)

ii) In Interstellar space, highly excited hydrogen atoms called Rydberg atoms have been observed. Find the wavelength of which radio astronomers must tune to detect signals from electrons dropping from n = 273 level to the n = 272. **(3 marks)** iii) Using an appropriate selection criteria, find the values of *l* and *m_l* for n = 2.

(4 marks)

- iii) Define the following terms as used in nuclear physics
 - i. Radioactivity
 - ii. Nuclear Reactor (2 marks)

iv) A piece of charcoal containing 25.0g of carbon is found in some ruins of ancient city. The sample shows a ¹⁴C activity *R* of 250 decays/mine. How long has the tree from which this charcoal came been dead? **(4 marks)**

- v) Describe briefly, the vector model of the atom and discuss the quantum number associated with it. (6 marks)
- vi) Give two failures of Classical Mechanics.(2 marks)
- vii) Find the longest wavelength present in the Balmer series of hydrogen corresponding to the H_{α} line. (3 marks)

Question Two

- a) Use the method of separation of variable to explain the origin of quantum numbers n, l and m_l . (8 marks)
- b) Briefly describe the two major coupling schemes in the vector model of an atom.
- (4 marks)
 c) List the possible quantum energy states that an electron may have for *n*=1 and *n*=2. Derive the list from both,
 - i. The system of quantum numbers n, l, m_l and m_s
 - ii. The system of quantum numbers n, l, j and m_j (4 marks)

d) Calculate the angle between **L** and **s** for which $s = \frac{1}{2}$ and l = 2 electron.

(3 marks)

QUESTION THREE

a)	Use Avogadro's number to show that 1 u 5 1.66 3 10227 kg.	(2 marks)
b)	Consider a nucleus of mass number A.	
	i) Find an approximate expression for the mass of the nucleus.	(1 mark)
	ii) Find an expression for the volume of this nucleus in terms of A.	(1 mark)
	iii) Find a numerical value for the density of this nucleus.	(2 marks)
c)	Briefly explain the two major nuclear models	(4 marks)
d)	The nucleus ⁶⁴ Zn has a tabulated binding energy of 559.09 MeV. Use the semi	
	empirical binding-energy formula to generate a theoretical estimate of the binding energy for this nucleus. (Use C $_1$ = 15.7 MeV, C $_2$ = 17.8 MeV, C $_3$ = 0.71 MeV, C $_4$ = 23.6	
	MeV)	(3 marks)
e)	The isotope carbon-14, 14 6C, is radioactive and has a half-life of 5 730 years. If you start with a sample of 1 000 carbon-14 nuclei, how many nuclei will still be un	
	decayed in 25 000 years?	(3 marks)
f)	At time t 5 0, a radioactive sample contains 3.50 mg of pure 11 6C, which has a half-	
	life of 20.4 min.	
	(i) Determine the number N_0 of nuclei in the sample at t = 0.	(2 marks)
	(ii) What is the activity of the sample initially and after 8.00 h?	(2 marks)
QUESTION FOUR		
a)	Discuss the Stern Gerlach experiment	(6 marks)
b)	Define the term "Zeeman Effect"	(2 marks)
c)	Differentiate between normal and anomalous Zeeman effects.	(5 marks)
d)	Jsing the appropriate selection rule, draw the normal Zeeman effect for the spectral	
	line $l = 2$ to $l = 1$.	(4 marks)
e)	A sample of a certain element is placed in a $0.0300T$ magnetic field and suitably	
	excited. How far apart are the Zeeman components of the 450nm spectral line of	
	this element?	(3 marks)

//END