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QUESTION 1 (30MARKS) 
 

a)  Define power set ( )P X of a set X  and hence show that the  power set 

( )P of is uncountable                                                                                 5marks 

b) Given that  
1

:A n
n

 
  
 

 . Determine sup , infA A  and state whether 

the maximum and minimum of A  exists.                         4marks 
 

c) Show that if 0x   , then 2 0x   and  hence deduce that 1 0                4marks 
 

d) Prove  that for a subset of  A  that is bounded below  

inf A  is unique                                                                                        4marks 
 

e)  Prove that 2  is irrational.                                                             5marks 
  

f) Using the ratio test  determine whether the following series converge or 

diverge  
2

1 2n
n

n



                                                                                                         3 marks  

 

g)    Define the function 2 2:    by 

     1 1 2 2 1 2 1 2, where , , ,x y x y x y x x x y y y        . Show that   is a 

metric on 2                                                                                                  5marks 
 

QUESTION 2 (20MKS) 
 

a) Let and A B  be non-void subsets of   that are bounded above. Show that 

     sup sup supA B A B                                                                              5marks 

b) Show that the empty set   is a subset of any other set                           3marks 

c)  Show that every convergent sequence is Cauchy                                     5marks 
d) Define a continuous function and hence determine whether the function 

:f   defined by  
1

  if  0

0   if  0  

x
x

xf x





 


  is continuous at 0x                 3marks 

e) Show that every Cauchy sequence is bounded                                             4marks 
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QUESTION 3 (20MKS) 
 

f)   Show that a point p X   is a limit point of E X  iff  there exists a 

sequence  nx


 of distinct points of  E  with  nx p n     such that 

lim n
n

x p


                                                                                                     10marks   

g) Show that if the sequences    and n nx y  are convergent and n nx y  for all 

n , then lim limn n
x x

x y
 

                 5marks  

 

h) If   
1

0

0 0

x
x

x

f x





 


   
 find    f x .                                                                5marks 

 
QUESTION 4 (20MKS) 

 
a)  Test for convergence in the following series  

 

i.       
1

2 n

n






          ii.   
1

1

1
n

n






          iii.   1

1n

n






                                9marks     

 
b)  Classify the monotonic sequences below.       

 

i. 3

nx n  

 

ii.  
1

1
n

nx


   

 

iii. 
1

nx
n

          

 
iv.   2nx                 n                                                                      4marks 

c) Binary operation on the set of all real numbers R  is defined by 

x y x y   . Show that   is commutative but not associative         2marks                                                                         

d) Define the terms 
 
i.  A metric space                                                                                      1mark 

 
ii. Neighbourhood                                                                                     1mark 

   
iii. A convergent  sequence                                                                     1mark 
 
iv. Monotonic  sequences                                                                        1mark 
 
v. Uniformly continuous function                                                      1mark  

//END 


