

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR FIRST YEAR SECOND SEMESTER

SCHOOL OF SCIENCE BACHELOR OF SCIENCE

COURSE CODE: MAT 1206

COURSE TITLE: LINEAR ALGEBRA I

DATE: 26-4-2019 TIME: 11:00-13:00HRS

INSTRUCTIONS TO CANDIDATES

Answer Question **ONE** and any other **TWO** questions

This paper consists of **THREE** printed pages. Please turn over.

QUESTION ONE (30 MARKS)

- a) Let $\underline{u} = (1, -3, 4)$ and $\underline{v} = (3, 4, 7)$, find;
 - i. The angle between u and v. (4 marks)
 - ii. Projection of \underline{u} on \underline{v} . (2 marks)
 - iii. A vector orthogonal to both u and v. (3 marks)
- **b**) Determine whether the vectors $\underline{u} = (1,1,1)$, $\underline{v} = (2,-1,3)$ and $\underline{w} = (1,-5,3)$ are linearly dependent or linearly independent. (6 marks)
- c) Find the condition on a, b and c such that $\underline{w} = (a, b, c)$ belongs to a space spanned by the vectors $\underline{u} = (1, -3, 2)$ and $\underline{v} = (2, -1, 1)$. (6 marks)
- **d)** Find the basis for the null space and the nullity of the solution space to the following homogenous system.

$$2x+4y-5z+3t = 0$$

$$3x+6y-7z+4t = 0$$

$$5x+10y-11z+6t = 0$$
(9 marks)

QUESTION TWO (20 MARKS)

- a) Find the area of parallelogram with vertices at $\vec{A}(1,2,3)$, $\vec{B}(-3,2,5)$ and $\vec{C}(3,2,4)$. (4 marks)
- **b)** Define linear combination, hence express vector $\underline{z} = (1, -2, 5)$ as a linear combination of the vectors $\underline{u} = (1, 1, 1)$, $\underline{v} = (1, 2, 3)$ and $\underline{w} = (2, -1, 1)$. (6 marks)
- c) Let the mapping $f: \Box^2 \to \Box^2$ be defined by f(x, y) = (x, x + y), show that f is a linear mapping. (6 marks)
- **d)** Determine the values of t for which the matrix $A = \begin{bmatrix} t-2 & 4 & 3 \\ 1 & t+1 & -2 \\ 0 & 0 & t-4 \end{bmatrix}$ is singular. (4 marks)

QUESTION THREE (20 MARKS)

a) Determine the value of k > 0 such that $\|\underline{u}\| = \sqrt{39}$, where $\underline{u} = (1, k, -2, 5)$. (4 marks)

b) Let
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 1 & 0 \\ -2 & -1 & 3 \\ -1 & 4 & -2 \end{bmatrix}$$
, find the rank of the matrix A . (4 marks)

c) For the following matrices
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 0 & 1 \end{bmatrix} B = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$$
 and $C = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$, show that

the associative law for matrix multiplication holds.

(4 marks)

d) Determine the values of k so that the following system in unknowns x, y and z

$$x+y-z=1$$
$$2x+3y+kz=3$$
$$x+ky+3z=2$$

has;

i. A unique solution?

ii. No solution?

iii. infinitely many?

(8 marks)

QUESTION FOUR (20 MARKS)

a) Solve the following system of linear equations by Gauss Jordan elimination.

$$x_{1} + 3x_{2} - 2x_{3} + 2x_{5} = 0$$

$$2x_{1} + 6x_{2} - 5x_{3} - 2x_{4} + 4x_{5} - 3x_{6} = -1$$

$$5x_{3} + 10x_{4} + 15x_{6} = 5$$

$$2x_{1} + 6x_{2} + 8x_{4} + 4x_{5} + 18x_{6} = 6$$
(9 marks)

b) Verify dimension theorem for the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined

by
$$T(x, y, z) = (x + 2y - z, y + z, x + y - 2z)$$
. (11 marks)