

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER

SCHOOL OF SCIENCE BACHELOR OF SCIENCE CHEMISTRY AND BACHELOR OF EDUCATION

COURSE CODE: CHE 419

COURSE TITLE: ELECTROCHEMISTRY

DATE: 26TH APRIL, 2019 TIME: 0830 - 1030 HRS

INSTRUCTIONS TO CANDIDATES

- 1. Answer Question **ONE** and any other **TWO** questions
- 2. No writing on the Question paper

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR FOUR YEAR, SECOND SEMESTER

SCHOOL OF SCIENCE BACHELOR OF SCIENCE CHEMISTRY/EDUCATION COURSE CODE: CHE 419

COURSE TITLE: ELECTROCHEMISTRY

DATE: APRIL 2019 TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Answer Question **ONE** and any other **TWO** questions
- 2. No writing on the Question paper

Question One (30 marks)

- Q1. (a) Define the following electrochemical terms and show how they are related to each other.
 - i. Conductance
 - ii. Conductivity
- iii. Molar conductivity
- iv. Transport numbers
- v. Standard electrode potentials

[10 marks]

- (b) (i) Discuss quantitatively the way in which conductivity and molar conductivity changes with increase in dilution for strong intermediate and weak electrolyte. [6 marks]
- (ii) Describe any three factors that affect conductance.

[6 marks]

(iii) Name four types of electrodes and describe each

[8 marks]

Question Two (20 marks)

- Q2. (a) In a moving boundary experiment a current of 1.6 mA was applied to a 0.02 M NaCl solution at 25°C using CdCl₂ as the following solution. It was found out that the boundary had moved 10 cm in 3453 seconds in a tube of cross sectional area 0.1115 cm². The conductivity of this solution chloride solution at 25°C is 2.313 x 10⁻³ cm²mol ⁻¹. Calculate
- (i) The mobility of Na⁺

[5 marks]

(ii) The transport number of Na⁺

[5 marks]

- (b) In a Hittorf cell experiment, a solution of silver nitrate was electrolyzed between silver electrodes. The amount of silver nitrate in the anode compartment was 0.227 g before electrolysis and 0.2819 g after electrolysis. During electrolysis, 0.0194 g of copper were deposited on the cathode of copper coulometer in series with the Hittorf cell.
- (i) Calculate the transport number of Ag⁺ and NO³⁻ ions.

[8marks]

(ii) Which of the ions (between $Ag^{\scriptscriptstyle +}$ and $NO^{3 \scriptscriptstyle -})$ carry majority of the current.

[2 mark]

Question Three (20 marks)

- Q3. (a) Given the metals silver and copper and solutions of silver nitrate and copper nitrate at 25°C.
- (i) Construct a cell which will operate spontaneously

[1 mark]

(ii) Write the equation for the reaction

[2 marks]

(iii) Calculate the equilibrium constant for the reaction

[4 marks]

(b) Explain how a fourth year chemistry student would be able to determine the transference number of H+ in aqueous solution of HCl using boundary method. Include diagrams and equations where necessary. [8 marks]

(c)Calculate the E_{cell} for the following:

Zn/ZnSO₄ (1.0M)// CuSO₄(1.0M)/Cu given that

$$Zn^{2+} + 2e^{-} = -0.763$$

[5 marks]

Question Four (20 marks)

(a) The specific conductivity of a saturated solution of barium sulphate is 4.41×10^{-6} ohm⁻¹cm⁻¹ and that of water used is 1.6×10^{-6} ohm⁻¹cm⁻¹. If the limiting molar conductance at infinite dilution of Ba²⁺ and SO₄²⁻ ions are 134 and 122.8 ohm⁻¹cm²mol⁻¹, respectively. Calculate

i. The solubility of BaSO₄ in moldm⁻³

[5 marks]

ii. The solubility product of BaSO₄

[5 marks]

(b)Define a coulometer and name any four types of coulometers

[5 marks]

(c) With the aid of a diagram describe a galvanic cell

[5 marks]