

# REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR SECOND YEAR FIRST SEMESTER

### SCHOOL OF SCIENCE BACHELOR OF SCIENCE IN APPLIED STATISTICS

## COURSE CODE: STA 2220

# COURSE TITLE: COMPUTATIONAL METHODS AND DATA ANALYSIS II

## DATE: APRIL 2019

TIME:

## **INSTRUCTIONS TO CANDIDATES**

- 1. Answer Question **ONE** and any other **TWO** questions
- 2. Show all your working and be neat
- 3. Do not write on the question paper

This paper consists of **THREE** printed pages. Please turn over.

#### **QUESTION ONE (30 MARKS)**

| 1. | Define the following terms as used in R                                                                      |            |  |  |
|----|--------------------------------------------------------------------------------------------------------------|------------|--|--|
|    | i. A data frame                                                                                              | (1 marks)  |  |  |
|    | ii. A matrix                                                                                                 | (1marks)   |  |  |
|    | iii. A Character object                                                                                      | (1 marks)  |  |  |
| 2. | The following is an example of a matrix with 2 rows and 3 columns $A = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ | 4 3<br>5 7 |  |  |
|    | Reproduce a memory representation of the matrix in R with the matrix function.                               |            |  |  |
|    |                                                                                                              | (4 marks)  |  |  |
| 3. | State and explain advantages of a spreadsheet over a hand calculator                                         | (6marks)   |  |  |
| 4. |                                                                                                              |            |  |  |
|    |                                                                                                              | (5 marks)  |  |  |
| 5. |                                                                                                              |            |  |  |
|    |                                                                                                              | (6marks)   |  |  |
| 6. |                                                                                                              |            |  |  |
|    | showing the proportion of painters in each school.                                                           |            |  |  |
|    | i. Use R in applying the table function to produce the frequency distribution of                             |            |  |  |
|    | School.                                                                                                      | (4marks)   |  |  |
|    | ii. With an extension of the program, write the program to colorize the                                      | pie chart  |  |  |
|    |                                                                                                              | (2 marks)  |  |  |

#### **QUESTION TWO (20 MARKS)**

- 1. If there are twelve cars crossing a bridge per minute on average
  - i. Write R program to find the probability of having seventeen or more cars crossing the bridge in a particular minute. (5 marks)
  - ii. Find the percentage probability of having seventeen or more car crossing the bridge in a particular minute (1 mark)
- 2. Define exponential distribution (1 mark)
- 3. Suppose the mean checkout time of a supermarket cashier is three minutes. Use R to find the probability of a customer checkout being completed by the cashier in less than two minutes by applying the functionpexp of the exponential distribution with rate=1/3.

(3marks)

4. Solve a system of equation using matrix 
$$8y + 16z = 0$$
$$x - 3z = 1$$
(10 marks)
$$-4x14y + 2z = 6$$

#### **QUESTION THREE (20 MARKS)**

- 1. State and explain three types of elementary operation which it can be used to transformed a system of linear equation to a simpler equivalent system (5marks)
- 2. State three steps of planning a function to extract every other element of a vector

(3marks)

- 3. Find the correlation coefficient of the eruption duration and waiting time in the data set faithful. Observe if there is any linear relationship between the variables. (4marks)
- 4. Describe the following terms

| i.   | Probability distribution | (2marks) |
|------|--------------------------|----------|
| ii.  | Normal distribution      | (2marks) |
| iii. | Binomial distribution    | (2marks) |
| iv.  | Central Limit Theorem    | (2marks) |

#### **QUESTION FOUR (20 MARKS)**

| 1. | Define a                                                                                                                                                                        | relative frequency distribution                                                     | (2 marks)             |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------|--|
| 2. | State and explain five principles of good coding (5marks)                                                                                                                       |                                                                                     | (5marks)              |  |
| 3. | Suppose there are twelve multiple choice questions in a Statistics class quiz. Each question                                                                                    |                                                                                     |                       |  |
|    | has five possible answers, and only one of them is correct. Using R, write a program which                                                                                      |                                                                                     |                       |  |
|    | find                                                                                                                                                                            |                                                                                     |                       |  |
|    | i. The probability of having exactly 4 correct answers if a student attempts to                                                                                                 |                                                                                     |                       |  |
|    |                                                                                                                                                                                 | answer every question at random.                                                    | (3 marks)             |  |
|    | ii.                                                                                                                                                                             | ii. The probability of having four or less correct answers if a student attempts to |                       |  |
|    |                                                                                                                                                                                 | answer every question at random.                                                    | (5 marks)             |  |
|    | iii.                                                                                                                                                                            | Then give the probability percentage of four or less question                       | ns answered correctly |  |
|    |                                                                                                                                                                                 | by random in a twelve question multiple choice quiz                                 | (1 marks)             |  |
| 4. | Assume that the test scores of a college entrance exam fits a normal distribution.                                                                                              |                                                                                     |                       |  |
|    | Furthermore, the mean test score is 72, and the standard deviation is 15.2. Using R, write and a program which finds the percentage of students scoring 84 or more in the exam? |                                                                                     |                       |  |
|    |                                                                                                                                                                                 |                                                                                     |                       |  |
|    |                                                                                                                                                                                 |                                                                                     | (4 marks)             |  |