

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR THIRD YEAR SECOND SEMESTER

SCHOOL OF SCIENCE AND INFORMATION SCIENCES BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION (SCIENCE)

COURSE CODE: CHE 3226 COURSE TITLE: CHEMICAL KINETICS

DATE: 4th MAY 2019

TIME: 8.30 AM – 10:30 PM

INSTRUCTIONS TO CANDIDATES

This exam paper consist of two sections A and B. Section A is compulsory. Answer any other TWO questions in section B.

$R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$	$N_A = 6.022 \times 10^{23}$ /mol	$0 \text{ K} = -273.15 \ ^{0}\text{C}$
$h = 6.626 \times 10^{-34} \text{ J.s}$	$c = 2.998 \times 10^8 \text{ m/s}$	

This paper consists of 6 printed pages. Please turn over:

SECTION A

QUESTION ONE

- a) Give brief definitions of the following chemical kinetics terms giving some examples in each case. (8 marks)
 - i. Rate-determining step
 - ii. Half-life
 - iii. Homogenous catalysis
 - iv. Activation energy

b)

i. Explain how the order of a reaction is generally determined. For a reaction with multiple reactants, how is the overall order defined?

(3 marks)

- ii. It takes 42.0 minutes for the concentration of a reactant in first-order reaction to drop from 0.45M to 0.32M at 25 °C. How long will it take for the reaction to be 90% complete? (4 marks)
- c) The following data were obtained in a kinetics study of the hypothetical reaction A + B + C → products.

[A] ₀ (<i>M</i>)	[B] ₀ (M)	[C] ₀ (<i>M</i>)	Initial Rate (10 ⁻³ <i>M</i> /s)
0.20	0.40	0.40	80
0.20	0.40	0.20	40
0.60	0.10	0.20	15
0.20	0.10	0.20	5
0.20	0.20	0.40	20

Using the initial-rate method, determine the rate law expression and the overall order of this reaction. (5 marks)

d) If a temperature increase from 10.0 °C to 20.0 °C doubles the rate constant for a reaction, what is the value of the activation barrier for the reaction? (5 marks)

e) A proposed mechanism for the formation of hydrogen iodide can be written in simplified form as

I₂
$$\frac{k_1}{k_{-1}}$$
 2I Fast
I + H₂ $\frac{k_2}{k_{-2}}$ H₂I Fast
H₂I + I $\frac{k_2}{k_{-2}}$ 2HI Slow

What rate law corresponds to this mechanism?

(5 marks)

(3 marks)

SECTION B

QUESTION TWO

a) For the formation of 1 mol of nitrosyl chloride at a given temperature, Δ H=-41 kJ.

 $NO_{(g)} + \frac{1}{2} Cl_{2(g)} \longrightarrow NOCl_{(g)}$

The activation energy for this reaction is 57000 J/mol. What is the activation energy for the reverse reaction in kJ? (4 marks)

b) An Industrial chemist is studying the rate of Haber synthesis:

 $N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)}$

Starting with a close reactor containing 1.15 mol L⁻¹ of N₂ and 0.35 mol L⁻¹ of H₂, she finds that the H₂ concentration had fallen to 0.10 mol L⁻¹ after 50 seconds. Estimate the concentration of:

- i. N₂ remaining after 100 seconds (3 marks)
- ii. NH₃ produced after 50 seconds
- c) Consider the chemical equation for the synthesis of methanol at 298 K:

 $CO_2 + 3 H_2 \longrightarrow CH_3OH + H_2O$

The experimental rate law is Rate = $k[CO_2][H_2]^2$. If time is measured in seconds and concentration is measured in moles dm⁻³, what are the units for the rate constant? (3 marks)

d) The gas phase reaction of NO with F_2 to form NOF and F has an activation energy of $E_a=6.3 \text{ kJ/mol}$ and the frequency factor of $A=6.0 \times 10^6 \text{ M}^{-1}\text{S}^{-1}$. The elementary reaction is believed to be bimolecular as shown below:

 $NO(g) + F_2(g) \longrightarrow NOF(g) + F(g)$

- i. What is the value of the rate constant at $100 \, {}^{\circ}$ C? (3 marks)
- ii. By what factor does the rate of the reaction increase when the temperature increases from 100 °C to 150 °C? (4 marks)

QUESTION THREE

a) The diagram below shows an Arrhenius plot for the data that were collected from the kinetics study of the following reaction as a function of temperature. (This reaction is first-order with respect to each reactant).

 $C_2H_5Br(aq) + OH^-(aq) \longrightarrow C_2H_5OH(l) + Br^-(aq)$

i. Determine the activation barrier and frequency factor for this reaction.

(5 marks)

- ii. Determine the rate constant at 15 °C. (3 marks)
- b) A certain biochemical reaction is endothermic and has an enthalpy of reaction that is half the value of the activation energy. Sketch a potential-energy diagram depicting the energy of the reaction as it progresses. Label the following on the diagram: *reactants, products, activation energy* and *enthalpy of reaction*. On the same graph, use a dotted line to draw a second curve showing the effect of an enzyme. Briefly discuss the role of the enzyme in changing the reaction. (4 marks)

- c) The decomposition of compound **AB** into its constituent atoms **A** and **B** was monitored as a function of time: The order of the reaction was determined graphically and a plot of 1/[AB] versus time only yielded a straight line (best fit line passes through all the data points) and had a slope $7.02 \times 10^{-3} \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$.
 - i. Write the rate law expression and the integrated rate law for this reaction. (2 marks)
 - ii. What is the half-life for this reaction at an initial concentration of 0.100 M? (3 marks)
 - iii. How long will it take for the concentration of AB to decrease to 12.5% of its initial concentration? (3 marks)

QUESTION FOUR

a) Consider the reaction:

 $2NH_3(aq) + OCl^{-}(aq) \longrightarrow N_2H_4(aq) + H_2O(l) + Cl^{-}(aq)$

This three-step mechanism is proposed.

NH ₃ (aq) + OCl ⁻ (aq)	$\frac{k_1}{k_1} \text{ NH}_2\text{Cl}(aq) + \text{OH}^-(aq)$	Fast
NH ₂ Cl(aq)+ NH ₃ (aq)	$\xrightarrow{k_2}$ N ₂ H ₅ ⁺ (aq) + Cl ⁻ (aq)	Slow
$N_2H_5^+(aq) + OH^-(aq)$	$\xrightarrow{k_3} N_2H_4(aq) + H_2O(l)$	Fast

- i. Show that the mechanism sums the overall reaction. (2 marks
- ii. Propose the rate law that is consistent with this mechanism. (5 marks)
- b)
- i. A rate law is one-half order with respect to a reactant. What is the effect on the rate when the concentration of the reactant is quadrupled (*four times the initial concentration*)? (3 marks)
- ii. There are several factors that affect the rates of chemical reactions. Which factor(s) would affect the magnitude of rate constant? Why? (2 marks)

- c) The half-life for a radioactive decay (a first-order process) of plutonium-239 is 24,000 years. How many years does it take for one mole of this radioactive material to decay so that just one atom remains? (4 marks)
- d) At 518 °C and relatively low pressures, the thermal decomposition of acetaldehyde, CH₃CHO(g) --> CH₄(g) + CO(g), is found to be second-order in acetaldehyde. From the following data, determine the value of the specific rate constant. (Give your answer in units of atm⁻¹s⁻¹). (4 marks)

Time (s)	Total Pressure (atm)
0	0.478
42	0.522
105	0.575
242	0.654
480	0.733