MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS
 2018/2019 ACADEMIC YEAR THIRD YEAR SECOND SEMESTER

SCHOOL OF SCIENCE AND INFORMATION SCIENCES BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION (SCIENCE)

COURSE CODE: CHE 3226
 COURSE TITLE: CHEMICAL KINETICS

DATE: $4^{\text {TH }}$ MAY 2019
TIME: 8.30 AM - 10:30 PM

INSTRUCTIONS TO CANDIDATES

This exam paper consist of two sections A and B. Section A is compulsory. Answer any other TWO questions in section B.

$\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$	$\mathrm{~N}_{\mathrm{A}}=6.022 \times 10^{23} / \mathrm{mol}$	$0 \mathrm{~K}=-273.15^{\circ} \mathrm{C}$
$\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}$	$\mathrm{c}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$	

This paper consists of 6 printed pages. Please turn over:

SECTION A

QUESTION ONE

a) Give brief definitions of the following chemical kinetics terms giving some examples in each case.
(8 marks)
i. Rate-determining step
ii. Half-life
iii. Homogenous catalysis
iv. Activation energy
b)
i. Explain how the order of a reaction is generally determined. For a reaction with multiple reactants, how is the overall order defined?
(3 marks)
ii. It takes 42.0 minutes for the concentration of a reactant in first-order reaction to drop from 0.45 M to 0.32 M at $25^{\circ} \mathrm{C}$. How long will it take for the reaction to be 90\% complete?
(4 marks)
c) The following data were obtained in a kinetics study of the hypothetical reaction
$\mathrm{A}+\mathrm{B}+\mathrm{C} \longrightarrow$ products.

$[\mathbf{A}]_{\mathbf{0}}(\boldsymbol{M} \mathbf{)}$	$[\mathrm{B}]_{\mathbf{0}}(\boldsymbol{M})$	$[\mathbf{C}]_{\mathbf{0}}(\boldsymbol{M} \mathbf{)}$	Initial Rate $\mathbf{1 0}^{\mathbf{- 3}} \mathbf{M} / \mathbf{s} \mathbf{)}$
0.20	0.40	0.40	80
0.20	0.40	0.20	40
0.60	0.10	0.20	15
0.20	0.10	0.20	5
0.20	0.20	0.40	20

Using the initial-rate method, determine the rate law expression and the overall order of this reaction.
d) If a temperature increase from $10.0^{\circ} \mathrm{C}$ to $20.0^{\circ} \mathrm{C}$ doubles the rate constant for a reaction, what is the value of the activation barrier for the reaction?
(5 marks)
e) A proposed mechanism for the formation of hydrogen iodide can be written in simplified form as

$$
\begin{array}{ll}
\mathrm{I}_{2} \stackrel{k_{1}}{k_{-1}} 2 \mathrm{I} & \text { Fast } \\
\mathrm{I}+\mathrm{H}_{2} \underset{k_{-2}}{\stackrel{k_{2}}{\rightleftharpoons}} \mathrm{H}_{2} \mathrm{I} & \text { Fast } \\
\mathrm{H}_{2} \mathrm{I}+\mathrm{I} \xrightarrow[k_{3}]{\longrightarrow} 2 \mathrm{HI} & \text { Slow }
\end{array}
$$

What rate law corresponds to this mechanism?

SECTION B

QUESTION TWO

a) For the formation of 1 mol of nitrosyl chloride at a given temperature, $\Delta \mathrm{H}=-41 \mathrm{~kJ}$.

$$
\mathrm{NO}_{(\mathrm{g})}+1 / 2 \mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow \mathrm{NOCl}_{(\mathrm{g})}
$$

The activation energy for this reaction is $57000 \mathrm{~J} / \mathrm{mol}$. What is the activation energy for the reverse reaction in kJ ?
(4 marks)
b) An Industrial chemist is studying the rate of Haber synthesis:

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}
$$

Starting with a close reactor containing $1.15 \mathrm{~mol} \mathrm{~L}^{-1}$ of N_{2} and $0.35 \mathrm{~mol} \mathrm{~L}^{-1}$ of H_{2}, she finds that the H_{2} concentration had fallen to $0.10 \mathrm{~mol} \mathrm{~L}^{-1}$ after 50 seconds. Estimate the concentration of:
i. N_{2} remaining after 100 seconds
ii. NH_{3} produced after 50 seconds
c) Consider the chemical equation for the synthesis of methanol at 298 K :

$$
\mathrm{CO}_{2}+3 \mathrm{H}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}
$$

The experimental rate law is Rate $=\mathrm{k}\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]^{2}$. If time is measured in seconds and concentration is measured in moles dm^{-3}, what are the units for the rate constant?
d) The gas phase reaction of NO with F_{2} to form NOF and F has an activation energy of $E_{a}=6.3 \mathrm{~kJ} / \mathrm{mol}$ and the frequency factor of $A=6.0 \times 10^{6} \mathrm{M}^{-1} \mathrm{~S}^{-1}$. The elementary reaction is believed to be bimolecular as shown below:

$$
\mathrm{NO}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \longrightarrow \mathrm{NOF}(\mathrm{~g})+\mathrm{F}(\mathrm{~g})
$$

i. What is the value of the rate constant at $100^{\circ} \mathrm{C}$?
ii. By what factor does the rate of the reaction increase when the temperature increases from $100{ }^{\circ} \mathrm{C}$ to $150{ }^{\circ} \mathrm{C}$?
(4 marks)

QUESTION THREE

a) The diagram below shows an Arrhenius plot for the data that were collected from the kinetics study of the following reaction as a function of temperature. (This reaction is first-order with respect to each reactant).
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}(a q)+\mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+\mathrm{Br}^{-}(a q)$
Arrhenius plot

Temp (C)	Rate constant (1/s)
25	0.0000881
35	0.000285
45	0.000854
55	0.00239
65	0.00633

i. Determine the activation barrier and frequency factor for this reaction.
ii. Determine the rate constant at $15{ }^{\circ} \mathrm{C}$.
b) A certain biochemical reaction is endothermic and has an enthalpy of reaction that is half the value of the activation energy. Sketch a potential-energy diagram depicting the energy of the reaction as it progresses. Label the following on the diagram: reactants, products, activation energy and enthalpy of reaction. On the same graph, use a dotted line to draw a second curve showing the effect of an enzyme. Briefly discuss the role of the enzyme in changing the reaction.
c) The decomposition of compound $\mathbf{A B}$ into its constituent atoms \mathbf{A} and \mathbf{B} was monitored as a function of time: The order of the reaction was determined graphically and a plot of $\mathbf{1} /[\mathrm{AB}]$ versus time only yielded a straight line (best fit line passes through all the data points) and had a slope $7.02 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$.
i. Write the rate law expression and the integrated rate law for this reaction.
(2 marks)
ii. What is the half-life for this reaction at an initial concentration of 0.100 M ?
(3 marks)
iii. How long will it take for the concentration of AB to decrease to 12.5% of its initial concentration?
(3 marks)

QUESTION FOUR

a) Consider the reaction:

$$
2 \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{OCl}^{-}(\mathrm{aq}) \longrightarrow \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

This three-step mechanism is proposed.

$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{OCl}-(\mathrm{aq})$	$\stackrel{k_{1}}{\stackrel{k_{-1}}{ }} \mathrm{NH}_{2} \mathrm{Cl}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{NH}_{2} \mathrm{Cl}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \xrightarrow[k_{2}]{\longrightarrow} \mathrm{N}_{2} \mathrm{H}_{5}{ }^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$	Fast
$\mathrm{N}_{2} \mathrm{H}_{5}+(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \xrightarrow[k_{3}]{\longrightarrow} \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	Slow
Fast	

i. Show that the mechanism sums the overall reaction.
(2 marks
ii. Propose the rate law that is consistent with this mechanism. (5 marks)
b)
i. A rate law is one-half order with respect to a reactant. What is the effect on the rate when the concentration of the reactant is quadrupled (four times the initial concentration)?
ii. There are several factors that affect the rates of chemical reactions. Which factor(s) would affect the magnitude of rate constant? Why? (2 marks)
c) The half-life for a radioactive decay (a first-order process) of plutonium-239 is 24,000 years. How many years does it take for one mole of this radioactive material to decay so that just one atom remains?
d) At $518{ }^{\circ} \mathrm{C}$ and relatively low pressures, the thermal decomposition of acetaldehyde, $\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{g})-->\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$, is found to be second-order in acetaldehyde. From the following data, determine the value of the specific rate constant. (Give your answer in units of atm ${ }^{-1} \mathrm{~s}^{-1}$).
(4 marks)

Time (s)	Total Pressure (atm)
0	0.478
42	0.522
105	0.575
242	0.654
480	0.733

